
Command and Control of Robot Teams
Jill Drury, Laurel D. Riek, Alan D. Christiansen,

Zachary T. Eyler-Walker, Andrea J. Maggi, and David B. Smith

The MITRE Corporation
7515 Colshire Drive
McLean, VA 22102

(703) 883-6000 www.mitre.org
{jldrury, laurel, adc, zach, amaggi, daves}@mitre.org

Abstract
We describe our efforts to produce a command and control (C2) interface for a

team of mobile robots. Specifically, we developed a robot interface with the

eventual goal of facilitating operators as they perform search and rescue tasks in

an indoor environment that includes simulated hazards and rubble. In this initial

study, we focus on evaluating how well the interface supports an operator

interacting with a single semi-autonomous robot. This paper describes our efforts

to design an appropriate command interface and to measure the usability and

effectiveness of that interface.

1. Introduction
We are concerned with the following problem: How can a human effectively control a

team of robots in an urban-search-and-rescue (USAR) environment? Such a situation

demands a well-designed human-robot interface that respects the cognitive and

perceptual strengths and limitations of the human. Consequently, robot interface

designers must be cognizant of what constitutes a “well-designed” interface.

This work was motivated by two factors. First, the MITRE robotics team plans to

compete in the 2003 RoboCup Rescue Competition. To ensure a favorable outcome we

needed to understand the usability of the MITRE human-robot interaction (HRI) design

and how it could be improved prior to the competition. Second, we wanted to

demonstrate the feasibility of applying human-computer interaction (HCI) techniques to

evaluate HRI. Scholtz (2002) maintains that techniques from HCI can be adapted for use

in HRI evaluation as long as they take into account the complex, dynamic, and

autonomous nature of robots. We used time-tested HCI evaluation techniques that were

developed as a result of decades of empirical research to recommend interface

improvements and provide independent validation of MITRE’s basic design approach.

Researchers in the robotics field often face pressure to perform demonstrations that limits

the opportunity to validate their approaches (Harrigan 2002); we hope to begin the

process of breaking this trend by providing an example of applying usability evaluation

techniques to a robotic interface.

We performed two types of evaluations using HCI techniques, one of which is reported

on in this paper. Prior to performing the evaluations, we defined goals and requirements

so that we could better understand when improvements need to be made versus when the

interface is “usable enough.” We compared our findings with the requirements to

determine the parts of the interface most in need of improvement.

Section 2 of this paper describes the MITRE robot’s hardware and software, whereas

section 3 contains a description of the human-robot interface. Section 4 discusses

previous work related to the evaluation of HRI, while Section 5 focuses on the evaluation

work. Section 6 provides a discussion prior to future work in Section 7.

2. Overview of Robotic Components
2.1. Hardware
The MITRE robot system is based on an ActivMedia Pioneer 2-AT robot platform. All

interaction with the robot was mediated through an onboard computer running Redhat

Linux with a 400MHz AMD K6-2 and 256MB RAM. The robot's onboard computer

maintains an 802.11b wireless link to base station computers. The onboard computer is

connected to an onboard microcontroller, which handles all low-level robot system tasks.

The robot’s movement is generated through a four-wheel drive skid-steer system. In

order to turn, the wheels on one side must be driven to turn more quickly than those on

the other. The set of wheels turning faster travel a longer distance than the slower set,

and all four wheels skid sideways to effect the turn. In most wheeled robots, odometry

(tracking of distance and direction) is accurate on smooth surfaces as long as the tires do

not slip with respect to the supporting surface. In a skid-steer platform, slip cannot be

avoided, making odometry inherently inaccurate.

The robot has a variety of additional sensors to provide information about internal state

and its surroundings. A ring of Polaroid SONAR range finders returns information about

the nearest detectable surface in each of sixteen directions. A SICK laser range finder

returns very accurate ranges to diffusely reflective surfaces in a 180 degree swath in front

of the robot, taking 361 samples per sweep in half-degree increments. Finally, there is a

video camera that can be panned, tilted, and zoomed as necessary. Pyrosensors (heat

detectors) were added to the robot after the evaluation took place.

2.2. Software
The software for the robots is written in C++ and makes extensive use of an application

programming interface (API) called ARIA (ActivMedia Robotics Interface for

Applications) provided by the manufacturer of the robot.

High level behaviors are created by composing a number of lower level actions. ARIA

comes equipped with several simple actions already defined. For example, avoid front

causes the robot to turn only if it perceives an obstacle near its front end; and constant

velocity causes the robot to drive indefinitely at a given speed. Combining these actions,

and others, in a prioritized fashion creates more complex behaviors. For example,

composing actions avoid front and constant velocity, and specifying a higher priority for

the former, will cause the robot to drive straight until it perceives a wall in front of it, and

then it will turn to avoid the wall. In the MITRE robot, this combination of actions is

called a wandering behavior.

Supervisory control of the MITRE robot team is made possible by a combination of

autonomous behaviors. Autonomous behaviors that enable exploration without requiring

continuous monitoring include:

• Wander (randomly explore a region)

• Go to (x, y), with destination selected by an operator gesture on the map display

• Seek certain types of regions (wander, but approach any region detected with certain

defined characteristics)

• Seek with pyrosensor or video motion detection (implementation in progress)

• Return to home base (implementation in progress)

Additionally, MITRE roboticists have developed several behaviors that respond to direct

tele-operation command by an operator. These commands specify robot velocity

(forward-backward and turning), as well as pan-tilt-zoom controls for the onboard

camera.

3. Interface Design

The MITRE command console interface includes several critical features that enable the

operator to monitor and control a team of robots executing several behaviors. A single

map pane indicates the locations of all robots and displays fused sensor data from all

robots in a single world representation. The map also contains multiple layers, which can

be displayed individually or simultaneously:

• Obstacle layer: Represents the probability that a location is occupied by an obstacle

to the robots. Data comes from robot bumpers, wheel encoders, SONAR, LADAR,

and operator input.

• Victim layer: Represents the probability that a region contains a victim. Data comes

from pyrosensor and motion detection algorithms, as well as operator input.

• Explore/avoid layer: Guides the operation of autonomous behaviors by representing

regions that robots should explore or avoid. Data comes from operator input.

map
area

command
history or
video
closeup

drawing tools
map

display
options

robot history command queue

robot
video

control panel
teleop,
camera,
or auto-
omous
behavior
controls

Supervisory control of robot teams requires the operator to be provided with the

capability to monitor the status of robots executing autonomous behaviors. For each

robot in the team (up to a maximum of three robots), the interface provides a pane that

includes a display of status messages, command history, and color video output, as well

as a STOP control. Through status messages (and eventually through more noticeable

visual cues), the robots can alert the user when they need assistance or confirmation of a

possible victim.

A depiction of one of the interface screens can be seen in Figure 1.

Figure 1: Command Console

A final interface feature that supports supervisory control is the ability to queue

autonomous commands. This capability enables the operator to give a sequence of

commands to one robot – such as a series of “Goto” waypoints, followed by a

“Pyrosensor seek” – then attend to other robots for a longer period of time while the first

robot carries out the sequence autonomously.

3.1. Map Display and Data Fusion

Robots often have a very difficult time understanding their environment. A critical part

of search and rescue is to be able to communicate where the team has searched and where

searchers are now. To help both the robot and the operator understand where a robot is

and what kinds of environmental challenges it is facing, the MITRE robots’ SONAR

sensors and laser range finder data are fused to create a map.

Because of sensor error and a changing environment, there can never be 100% certainty

regarding placing obstacles on a map. Instead, the map is generated in a probabilistic

fashion so both the operator and the robot can estimate the likelihood that an obstacle

exists at a given location. The robot starts by assuming that the whole region around it

has about a 50% chance of containing obstacles. Sensors provide the robot with a list of

angles and distances indicating the direction and location of nearby obstacles. At each

map location corresponding to each distance and angle in the list, the obstacle probability

is increased by a small amount. At the several map locations corresponding to a listed

angle, but at distances between the robot and the returned distance, the probability is

decreased by a small amount. (If there had been an obstacle at a closer distance, the

sensors would have reported that closer distance.)

In general, the information from the laser is much more accurate than the SONAR

sensors. The laser provides a 180 degree sweep in front of the robot at half degree

increments and is accurate to within a few centimeters. However, the laser performs

poorly when the obstacle is made of a translucent material or is very reflective, such as a

mirror. The SONAR sensors, on the other hand, detect these surfaces when the surfaces

are perpendicular to the sensor’s view, but SONAR is easily fooled when the sensor’s

view is not square on to the obstacle. Because each device has different strengths and

weaknesses the MITRE design uses a combination of the two to determine the locations

of obstacles. In general the laser data is used, but in cases where the laser does not see an

obstacle and the SONAR does, the SONAR data is used.

3.2. Communication and Networking Architecture
A variety of messages are sent over a wireless LAN to enable control of the robot team,

fusion of robot sensor data, robot localization, and presentation of robot sensor data and

status information to the operator. Control and status messages between the command

console and the robots are sent as text in a simulated broadcast architecture. Messages

are echoed by a communications relay subsystem of the command console to all

connected robots via point-to-point TCP. Each robot sends raw or processed output from

the color video camera to the command console in the form of a sequence of compressed

frames in JPEG format.

This network architecture has several benefits. First, it enables operators to send high-

level commands to the entire robot team, which may be interpreted differently by each

robot. For example, if a command to explore a region were addressed to “any robot,” the

robots could negotiate or use a common distributed algorithm to determine which robot

would perform the task. Second, it allows for alternative or secondary control consoles,

which can relay commands to robots and receive status messages from the robots via the

communications subsystem. Finally, even for commands or status messages pertaining to

a specific robot, it allows each robot to be aware of the current status of the other robots.

The robot team architecture includes a mapping and localization server, which fuses

operator inputs and robot sensor data (other than video) into a single representation of the

environment. To support this functionality, the robots send raw sensor data to the map

server, and the map server sends fused map data to the robots and the command console,

and localization information to the robots. The operator can also modify the world

representation via messages from the command console to the map server. This flow of

messages can be seen in Figure 2.

4. Related Work for Evaluation of HRI
As can be seen by the previous two sections, the hardware, software, and interface

designs developed for this project are unique. The MITRE robotics team needed a way

of determining whether the interface approach would support their goal of being able to

efficiently find victims in a search-and-rescue environment.

Figure 2: Communication Architecture

Evaluation of HRI can be viewed through the lenses of intelligent systems and HCI.

Before any interface (robotic or otherwise) can be evaluated, it is necessary to understand

the operators’ relevant skills and mental models and develop evaluation criteria with

those users in mind. There is no single, generally accepted set of evaluation criteria for

HRI.

Some criteria were proposed by Messina et al. (2001) as part of the intelligent systems

literature, but they are qualitative criteria that apply to the performance of the robot only,

as opposed to the robot and the operator(s) acting as a cooperating system. An example

criterion from Messina is: “The system … ought to have the capability to interpret

incomplete commands, understand higher level, more abstract commands, and to

supplement the given command with additional information that helps to generate more

specific plans internally” (Messina et al. 2001). In contrast, an example of a qualitative

criterion that addresses human-robot performance might be: “The HRI shall facilitate the

commands and status

map data

video

Message Types
Command
Console

Robot 1 Robot 2 Robot N…

Map Server Communications
Relay

human’s use of commands and his or her assessment of whether the robot has correctly

interpreted and executed the commands.”

Scholtz (2002) proposes six evaluation “issues” for intelligent systems. Scholtz raises

these issues “to determine what information the user needs to understand what the

intelligent system is doing and when intervention is necessary, and what information is

needed to make any intervention as effective as possible” (Scholtz 2002). Examples of

Scholtz’ issues are “Is the interaction language efficient for both the human and the

intelligent system?” and “Are interactions handled efficiently and effectively – both from

the user and the system perspective?”

We defined evaluation criteria (stated as goals and requirements) as part of this study.

They are informed by both Messina’s criteria and Scholtz’ issues, but are tailored for the

specifics of the tasks expected to be performed by the MITRE robots and their operators.

We performed two types of evaluations whose origins spring from the HCI field:

inspection evaluations (where experts examine an interface and compare it with known

principles of human-computer interaction) and empirical evaluations (where users are

involved, in this case to perform typical tasks in a realistic environment). The inspection

evaluation is reported on in this paper.

A common inspection method is heuristic evaluation (Molich and Nielsen 1990), which

involves multiple evaluators examining a system to see whether it complies with basic
HCI principles (known as heuristics). We adapted principles from Nielsen (1994) to be

more relevant to HRI evaluations. We do not know of any previous attempts to use

heuristic evaluation for HRI.

5. Inspection Evaluation of Interface
Molich and Nielsen’s heuristics consist of general principles that were derived based on

looking at usability problem reports from numerous evaluations (Molich and Nielsen

1990). The causes of the problems were identified, clustered into groups, and related

groups were aggregated into supergroups. One primary cause of the problems was

identified for each supergroup; these causes evolved into the ten heuristics in the first

column of Table 1 (Nielsen 1994).

Table 1. Application of Nielsen’s Heuristics to HRI

Nielsen’s Heuristics Nielsen’s Heuristics Applied to HRI
Does the program speak the user’s
language?

Is the robot’s information presented in a way
that makes sense to human controllers?

Does the program minimize the user’s
memory load?

Can the human(s) control the robot(s) without
having to remember information presented in
various parts of the interface?

Is the program consistent? Is the interface consistent? Is the resulting
robot behavior consistent with what humans
have been led to believe based on the
interface?

Does the program provide feedback? Does the interface provide feedback?

Does the program have aesthetic
integrity (e.g., a simple design)?

Does the interface have a clear and simple
design?

Does the program help prevent, and
recover from, errors?

Does the interface help prevent, and recover
from, errors made by the human or the robot?

Does the program follow real-world
conventions?

Does the interface follow real-world
conventions, e.g., for how error messages are
presented in other applications?

Is the program forgiving; does it allow
for reversible actions?

Is the interface forgiving; does it allow for
reversible actions on the part of the human or
the robot?

Does the program make the repertoire
of available actions salient?

Does the interface make it obvious what
actions are available at any given point?

Does the program provide shortcuts and
accelerators?

Does the interface provide shortcuts and
accelerators?

The problem reports that formed the basis of Nielsen’s heuristics were obtained from

evaluations of single-user computer applications such as word processors. The heuristics

are stated at a high-enough level, however, that many are applicable to human-robot

interaction. Few people would argue that a “clear and simple design,” “consistency,” and

“shortcuts” are undesirable for the interface of any computer-based system. The idea

behind heuristic evaluation is that the heuristics can and should be tailored for the

interface being examined (Nielsen 1993). Despite the differences between traditional

single-user applications and robots, our tailoring was fairly minimal. Most tweaks to the

heuristics were made to emphasize the semi-independent nature of the robots; e.g.,

recovery from errors may be needed due to either human or robot errors. Our tailored

heuristics can be seen in the second column of Table 1.

An advantage of heuristic evaluations is that they can uncover many potential problems

in a relatively short amount of time. Heuristic evaluations can be done without the

extensive preparations often required of other evaluation methods, such as finding users

willing to act as subjects in usability testing. The power of the method comes from

having more than one inspector examine the interface since, while there are overlaps,

different inspectors tend to see different problems.

A disadvantage of heuristic evaluations is that they can miss subtle problems that pertain

to users’ assumptions or specific methods of working that are unknown to evaluators.

Thus, we followed the approach recommended by numerous HCI professionals and

researchers of first performing a heuristic evaluation and subsequently performing a

usability test with representative users engaged in typical tasks. (The results of the

usability test are not included in this paper due to space limitations.)

After tailoring the heuristics, two evaluators examined the MITRE interface, looking at

every screen and interaction dialog component to see how they compared against the

heuristics. Upon completion of their examinations, the evaluators pooled their findings.

A summary of these findings can be found in Table 2, which repeats the tailored

heuristics in the first column.

Table 2. Summary of Heuristic Evaluation Findings

Nielsen’s Heuristics Applied to
HRI

Areas of Potential Non-Compliance

Is the robot’s information
presented in a way that makes
sense to human controllers?

• The turn control did not make sense because it was
implemented “backwards” (turning it to the right
sent the robot to the left).

Can the human(s) control the
robot(s) without having to
remember information presented
in various parts of the interface?

• Labels are missing on some controls. For
example, operators must remember the units used
in the distance slider.

Is the interface consistent? Is the
resulting robot behavior
consistent with what humans
have been led to believe based
on the interface?

• The robot’s position is updated more quickly than
the obstacle mapping portion of the display,
leading to the case where the robot’s position can
be depicted in the middle an area that is shown as
not having been explored yet (except the robot is
exploring it).

• The turn control is inconsistent with usual
conventions (see above).

Does the interface provide
feedback?

• Portions of the map update so slowly that feedback
regarding the robots’ position is not always
received in time to prevent bumping or collisions.

• Feedback is not quickly given when the user issues
a “stop” command, so the user presses the
command again.

Does the interface have a clear
and simple design?

• The drawing tool palette contains some icons
whose meanings are not clear to users. The
drawing tools are in “prime” real estate (top left
hand corner, where users’ eyes first begin scanning
the display) yet are not often used.

• The design is not easily expandable for more than
three robots.

Does the interface help prevent,
and recover from, errors made by
the human or the robot?

• It is possible to ask for a ‘video closeup’ with a
small video window still open; when the same
robot’s video is requested this results in an error.

• Insufficient feedback results in bumping errors.

• Users who misremember the applicable distance
units may undershoot or overshoot.

Table 2, concluded. Summary of Heuristic Evaluation Findings

Nielsen’s Heuristics Applied to
HRI

Areas of Potential Non-Compliance

Does the interface follow real-
world conventions, e.g., for how
error messages are presented in
other applications?

• The turn control violates expectations for direct
manipulation.

Does the interface make it
obvious what actions are
available at any given point?

• No non-compliance noted.

Is the interface forgiving; does it
allow for reversible actions on
the part of the human or the
robot?

• Interface commands resulting in collisions may
cause irreversible injury or damage.

Does the interface provide
shortcuts and accelerators?

• Setting up the interface requires choosing the
robot’s name in three places; only one choice
should be needed as a default.

• The set-up default should automatically bring up
the chosen robots’ video and scroll the map
window to the robots’ location(s).

• A user should not have to close a small video
display to show the same video in the large display
area.

6. Discussion and Recommendations
Since the goal of usability evaluations is to find problems, it is easy for the results

presentation to sound negative. In fact, several aspects of the MITRE robot HRI design

work very well. For example, the interface does not require extensive manipulation to

see all the relevant information; thus the memory load on users is not very high. The

“STOP” buttons are highly visible and available in all modes of operation. The data

fusion implemented in the map overlays is promising.

To improve control of the robots in a search-and-rescue scenario, we recommended

correcting the problems identified as non-compliance areas in the heuristic evaluation

(Table 2). In particular, we feel the following modifications are critical:

• more timely map updates

• faster and more easily perceived feedback on acknowledgment and execution of

commands

• additional context information regarding the robot’s position

• more feedback concerning when a robot has made (or, better yet, is about to make) an

error

Note that these recommended modifications all pertain to improving an operator’s real-

time awareness of a robot’s position, immediate environment, and activities.

7. Future Work
We plan to perform future HRI evaluations after the aforementioned improvements have

been made. Further evaluations will likely take the form of usability tests and may

involve one user directing multiple robots simultaneously, and different user groups (e.g.,

search-and-rescue workers) under both single- and multiple-robot conditions.

We hope the methodologies presented in this paper will encourage other researchers to

use HCI techniques to evaluate their HRI.

8. References
1. Harrigan, R. W. (2002). “Is it a wave or is it a particle? The synergy of theory and

experimentation” Workshop on Validation of Public Sector Robotic Systems: Moving
from Demos to Experiments, 2002 IEEE International Conference on Robotics and
Automation, Crystal City, Virginia, May 12, 2002.

2. Messina, E., J. Evans and J. Albus. “Evaluating knowledge and representation for

intelligent control”. In Proceedings of the 2001 Performance Metrics for Intelligent

Systems (PerMIS) Workshop, in association with IEEE CCA and ISIC, Mexico City,

Mexico, Sept. 4, 2001.

3. Molich, R. and J. Nielsen (1990). “Improving a human-computer dialog.”

Communications of the ACM, 33(3): 338-348.

4. Nielsen, J. (1993). Usability Engineering. Chestnut Hill, MA: AP Professional

Press.

5. Nielsen, J. (1994). “Enhancing the explanatory power of usability heuristics.” In

Proceedings of the CHI 94 Conference on Human Factors in Computing Systems,

Boston, MA, ACM.

6. Scholtz, J. (2002). “Evaluation methods for human-system performance of intelligent

systems.” In Proceedings of the 2002 Performance Metrics for Intelligent Systems

(PerMIS) Workshop.

