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Abstract— Robots are expected to become a ubiquitous tech-
nology in the near future, where different people from a wide
variety of backgrounds may have daily interactions with robots.
These co-present humans will expect to be able to customize
robot behavior to suit their preferences and needs through
intuitive methods, such as learning from demonstration (LfD).
However, these interactions will vary depending on the personal
qualities of the user, and to the best of our knowledge, no
work has explored how these qualities affect the teaching of
a robot during an LfD task. This paper introduces a novel
experimental design for testing patience during LfD instruction,
and explores the relationship between personality and patience
while teaching an autonomous DARwIn-OP robot. Another
contribution of this paper is the introduction of systematic error
simulation during LfD.

I. INTRODUCTION

People have different backgrounds that can affect their
attitudes towards technology. Some individuals may come
from cultures where robots are treated as living entities with
respect, while others may come from cultures that view
robots more as tools [20]. People also have a wide range
of cognitive and physical abilities that can affect how they
perceive, interact with, and accept robots. One way to help
address the concern of universal acceptance is by allowing
people to customize robot behavior to more ideally suit their
preferences and needs.

Learning from demonstration (LfD) is one viable way
for non-technical members of society to accomplish this
task of developing and modifying custom robot behavior. In
LfD, a learner creates a mapping between states and actions
by watching a teacher perform the task and attempting to
replicate the action [2], [4], [6], [23].

The main benefit of LfD is that it is an intuitive way for
people to teach others and does not require the teacher to
have highly specialized knowledge. Researchers have noted
its significant advantages in robot control and it has already
been explored to a large degree in field of automatic robot
programming [3]. LfD could also play a crucial role in the
prevalence of robots in general society in the near future by
allowing non-robotics experts to create custom behavior for
robots [2].

In addition to allowing people who are not technically in-
clined to customize their robot’s behavior, LfD also addresses
a major concern from robotics and human-robot interaction
(HRI) researchers. Developers cannot explicitly program for
all situations a social robot may be in given the wide range of
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possibilities varying complexity of each situation. Learning
from demonstration allows for the robot to adapt to new
situations by learning new behaviors on the fly. By allowing
for the creation of robot behavior that adapts to the needs
of its user, a robot will become individualized making it
different from any other robot as well as personalized, since
will reflect the needs of its surrounding environment as well
as the actors in that environment [8].

In regards to unique human attributes, personality in
particular plays a critical role in HRI. In both the HRI
and human-computer interaction (HCI) literature, personality
traits have been shown to affect how people interact with
different technologies [1], [5], [8], [19], [22], [28]. In HRI,
personality is largely discussed in the domain of robotic an-
thropomorphism where people project and/or attribute human
like qualities to robots [13], [14], [21].

Personality has also been shown to affect the willingness
of people to accept a new technology and their willingness to
adapt to it. The Technology Acceptance Model (TAM) is the
most widely recognized model of technology acceptance, and
is used to predict and understand how people may come to
adapt a technology [9]. Devaraj et. al [10] explored the TAM
along with the previously discussed five personality traits and
showed how they relate to perceptions of a technology and
willingness to adapt, with the exception of “openness” not
being supported by findings.

However, to our knowledge, there has been little to no
work that explores the possible relationship of human person-
ality and a person’s patience when dealing with robots. This
is an important area to research since given the wide variety
of tasks that social robots will be asked to accomplish [25],
robots will definitely make mistakes. While some robotic
mistakes could have drastic consequences, such as in the
areas of healthcare and socially assistive robots, it is also
important to explore the effects that minor annoyances, such
as a robot not performing in an expected way, could have on
user patience and overall acceptance.

This paper explores how personality types factor into the
degree of patience a person has when teaching and correcting
an error-prone robot during a learning from demonstra-
tion task. In our work, we use the widely-accepted five
factor model of personality, which focuses on the factors
of openness, conscientiousness, extraversion, agreeableness,
and neuroticism [11].

Openness describes the appreciation of intellectual creativ-
ity, exploration, and the predisposition of novelty. Conscien-
tiousness describes the degree to which people exhibit self-
discipline and responsibility; people who are conscientious



are goal oriented and rely on planned behavior.
Extraversion focuses on the degree to which a person is

outgoing and exhibits positive emotions in the company of
other people. Agreeableness describes the compassion and
cooperativeness of a person; people who score highly on
agreeableness are well tempered. And finally, neuroticism
describes emotional instability such as the propensity of
anger and sadness and is scored on a negative scale (i.e.,
a high degree of neuroticism is a negative aspect, whereas
for all other dimensions a high score is a positive aspect).

This motivates our primary research question: do certain
personality traits affect an individual’s patience when inter-
acting with a robot during a learning from demonstration
task?

This leads us to five hypotheses:
H1: People who score higher on conscientiousness will be

less patient with a robot than those who who score lower on
this scale.

H2: People who score lower on emotional stability will
be less patient with a robot than those who score higher on
this scale.

H3: People who score higher on agreeableness will be
more patient with a robot than those who score higher on
this scale.

H4: People who score higher on extraversion will be more
patient with a robot than those who score higher on this scale.

H5: People who score higher on openness will be more
patient than those who score lower on this scale.

These hypotheses are motivated by the defining qualities
of each trait. People who score higher on conscientiousness
are more goal-oriented and organized, so it is reasonable
to assume that such a person will not positively respond
to unexpected robot behavior that inhibits progress towards
reaching a goal.

People who score lower on emotional stability are more
prone to experience negative emotions such as anger and
anxiety, and unwanted robot behavior should more easily
frustrate a person with lower emotional stability. The reason
we use the term “emotional stability” rather than “neuroti-
cism” is due to the specific personality test we employed
(see Section II-B).

A high agreeableness score indicates that the individual
is more well-tempered and cooperative than those who score
lower on this scale, so such a person would be more tolerable
and patient with a robot.

The hypothesis for those who score higher on extraversion
is a less directly related to patience than the other traits,
but we hypothesize that since those who score high on
extraversion exhibit more positive emotions than those who
score lower, they would in turn be more patient with a robot.

A high score on openness signifies that a person is
open to new experiences and is intellectually curious, so
their response to unexpected robot behavior would be more
positive than one who scores lower on this scale.

In Section II, we discuss our experimental methodology,
and report our results in Section III. In Section IV, we discuss
the implication of these findings for the robotics community,

Fig. 1. This diagram shows the experiment room setup for our mock LfD
task. A participant (left), presents a color card to the robot (right), and this
action is captured by a Kinect behind the robot.

particularly for roboticists interested in building robots that
will work alongside people.

II. METHODOLOGY

In order to measure the degree of patience a person has
when dealing with a robot that behaves in an undesirable and
potentially frustrating way, we designed an experiment that
uses a mock LfD approach. In this experiment, participants
were given the task of teaching four colors to a small
autonomous humanoid robot positioned on top of a table.
To teach the robot a new color, participants 1) hold up a
color card in front of the robot, 2) state its color while
simultaneously 3) pointing to the corresponding color card
on the table in front of the robot, and 4) wait for the robot
to point to the same table card while stating the color.

This study was advertised as one where the purpose was
to determine how effectively a person, regardless of technical
background, could teach a robot through a LfD task. Though
participants were told that the robot would be learning new
behavior from them, the robot did not actually learn anything
from the participant and was programmed to autonomously
interact with participants in a predetermined manner. We
decided not to implement actual robot learning at this point
in order to precisely control for robot errors, and a setup that
does involve true LfD would be one immediate followup to
this study.

A. Programming and Setup

To program this experiment, we combined the capabilities
of the humanoid robot and a computer running ROS Electric
on Ubuntu 11.10. The robot used in the experiment was a
DARwIn-OP, developed by ROBOTIS [16]. DARwIn-OP has
a height of 17.89 inches and features a built in personal
computer, a microcontroller, multiple high performance servo
motors, and a variety of sensors such as a gyroscope and
accelerometer that enables it to balance while walking.

Although the DARwIn-OP contains microphones and a
camera, both of which are applicable to this experimental



Fig. 2. Viewpoint of the room from a perspective similar to that of the participant’s (left) and the Kinect’s viewpoint (right) with blob detection enabled.

setup, we did not utilize these sensors. Instead, we used ROS
to create a custom program that employed the blob detection
capabilities of the Microsoft Kinect to identify the color cards
a participant held up in front of the robot. When the program
recognizes the color of the held up card, it then determines
the actions of the robot and forwards a command through
an Ethernet connection. This command signifies what the
DARwIn-OP says, what card it points to, and also controls
its head movement.

Figure 1 demonstrates the experimental set up. The par-
ticipant is situated at a table opposite from the robot, see the
left image of Figure 2 for a viewpoint of the room similar to
that of the participant’s. The DARwIn-OP is positioned on
top of the table facing towards the participant. In front of the
robot are four color cards that it can point to; the participant
holds up slightly larger color cards to present to the robot.
Behind the robot and positioned at human height is the the
Microsoft Kinect, see the right image of Figure 2 for the
Kinect’s viewpoint of the room.

B. Preliminary Tasks

Prior to performing the LfD portion of the experiment,
each participant completed an online survey primarily fea-
turing a personality test. This personality test was taken from
the 100-item unipolar personality test developed by [15],
known as the Trait Descriptive Adjectives (TDA). This test
is noted for being a considerably robust and reliable test
for the five personality traits [27]. The traits targeted are
surgency (equivalent to extraversion), agreeableness, consci-
entiousness, emotional stability (the inverse of neuroticism),
and intellect (equivalent to openness). Each of these five traits
has a total of twenty items devoted to negative and positive
attributes. Surgency, agreeableness, conscientiousness, and
intellect each have 10 items devoted to both the positive and
negative attributes. However, emotional stability has 6 traits
devoted to its positive attributes and 14 traits devoted to its
negative attributes.

At the end of this online survey, participants were in-
structed to designate times during which they were available

to visit our lab to complete the LfD portion of the experi-
ment.

Once a participant arrived to the experiment room, he/she
filled out various forms and was given instructions for the
experiment. In addition to an instruction form, participants
also watched a tutorial video in which the same robot is
taught a set of four different colors: pink, purple, brown, and
yellow. The manner in which the person in the video taught
and tested the robots ability to identify colors is identical to
what the participants did for this experiment, with the only
difference being the colors used. Participants were told that
due to the scenario shown in the tutorial video, the robot has
already learned the color “yellow”, and that color is used to
transition between the three stages of the experiment.

C. Learning from Demonstration Task

The mock LfD portion consists of three stages: pre-
training, training, and testing.

1) Pre-training: In pre-training, the participant simply
holds up a card in front of the robot to practice presenting a
card to the robot and reacting to its response. To follow the
LfD narrative, the robot only states “I see a card” when the
participant holds up any card other than yellow, since it has
not yet been taught any color by the participant. To move on
to the training stage of the experiment, a participant holds
up the yellow card twice consecutively. In return, the robot
informs the participant that it is ready to learn new colors.

2) Training: In the training phase, the participant teaches
the robot a color by holding up a card, stating its color, and
pointing to the respective color card in front of the robot.
To simulate learning, the robot pauses briefly before looking
at the card on the table that the participant points to, and
then points and repeats the color of the card. After pointing
to the card, the robot looks back up at the participant and
states that it is ready to learn the next color. Once training
is done for all four colors, the participant signifies they are
ready move on to the timed testing phase by once again
holding up the yellow card twice. The robot then informs
the participant it is ready to test its new color knowledge
and that it is ready for the first card. It is important to note



that for both the training and testing phases, the participants
follow a provided sequence of colors to present to the robot.

3) Testing: In the testing phase, participants are given
the task of testing and correcting the robot to the point
where it can correctly identify five colors in a row within
seven minutes. A correct identification happens when the
participant holds up the card, without stating or pointing to
the color, and the robot points to and states the correct color
on its first attempt. When the participant presents a color
card to the robot, it mimics making at a decision by first
scanning the cards in front of it twice and then pointing to
a card. The testing phase is the portion of the experiment
where we measure participant patience by manipulating the
expected behavior of the robot.

While the program is autonomous, it is designed to inten-
tionally make numerous mistakes during this testing phase.
In this case, a mistake is where the robot states the color
held up by the participant while pointing to the incorrect
color. Participants are warned that mistakes may happen
during the testing phase since the robot is using a simple
machine learning algorithm that considers 1) the color the
participant holds up, 2) the color the participant states, and
3) the participants pointing action during the training phase
of the experiment.

When the robot misidentifies a color, the participant can
choose to correct the robot by repeating the learning process
for that one color, or they can choose to move on to the
next color in the sequence by raising the yellow card once.
Due to this simple machine learning algorithm, there is a
stated trade-off proposed to the participants. This trade-off
is between the participants making sure the robot correctly
identifies a color through multiple re-teachings if necessary,
or deciding to move on to the next color in a sequence and
hoping that the robot later correctly identifies the color after
correctly identifying other colors.

However, the robot makes mistakes on a very frequent
basis during the testing phase that requires participants to
correct the robot a relatively large amount of times before
it eventually makes a correct identification for a color.
The number of times the robot makes a mistake for any
given color in the sequence is predetermined by a randomly
generated list. The program uses this random list for all
participants so that each participant experiences the same
robot behavior of correct/incorrect identifications. While the
number of mis-identifications for any given color is random,
the robot does not mistake a certain color less than five times
or more than ten times before eventually correctly identifying
it. The program is designed to make the goal of five correct
identifications in a row impossible to reach, regardless of
how long the person interacts with the robot.

After seven minutes, the LfD task ends and the participant
leaves the experiment room. Participants are then asked to
provide any feedback they may have regarding the exper-
iment on an online form. The experimenter then debriefs
the participant to inform them of the true objective of the
experiment Finally, the participant is compensated for their
time with a $5 gift card before leaving.

D. Measurements

We employed the TDA personality assessment instrument
as noted by [27]. Participants were asked to rate themselves
for each of the 100 adjectives on a scale from 1 to 9,
a score of 1 signifying that an adjective was ”extremely
inaccurate” and 9 signifying that it was ”extremely accurate.
Each adjective listed in the personality test corresponds to
either a positive or negative attribute for a specific personality
dimension. For example, the item “pleasant” is a positive
attribute for the dimension of Agreeableness, while “rude”
is a negative attribute for the same dimension. Positive
attributes are summed normally depending on the response
on the 9-point Likert scale. However, negative attributes are
reflected (i.e. a “1” would become a “9” and vice-versa)
before being summed with the positive attributes.

We created our own measurement to calculate a partici-
pant’s degree of patience with the robot. This measurement
was calculated by dividing the number of times a person
actually corrected the robot by the total number of possible
times the person could correct the robot. To illustrate this,
consider a scenario where the robot would intentionally
misidentify a certain color in the sequence five times before
finally identifying the correct color. If the participant gave
up re-teaching that color after two attempts, the ratio of
attempted corrections out of possible corrections for this
particular instance would be 2/5.

We used a ratio instead of counting the number of times a
participant corrected the robot to account for amount of times
participant attempted to correct the robot before moving on.
For example, a participant who was patient enough to correct
robot mis-identifications until the robot got it correct would
have a noticeably higher patience ratio than a person who had
the same total number of attempted corrections but moved on
to the next color in a sequence after two mis-identifications.

To determine how personality corresponds to the degree of
patience the participant had with the robot, each dimension
in TDA instrument was compared separately to this patience
ratio through correlation analysis.

III. RESULTS

We recruited 39 participants on the University of Notre
Dame campus, via through mailing lists and physical flyers.
All participants were native English speakers. We targeted
native English speakers due to concerns raised during beta
testing regarding some of the unclear meanings of adjectives
used in the personality test. There were a total 18 female
participants and 21 male participants. The average age of
the participants was 21.76 with a standard deviation of 3.11.

Before running correlation analysis for the relationship
of patience and any of the five personality dimensions, we
first verified the normalcy of participant patience scores.
This check was done through the use of a parametric test.
This test resulted in z-scores for kurtosis and skewness of
1.208 and 1.506 respectively. Since these scores fell below
the threshold of 1.96 for small data sizes, this showed that
the patience scores followed a normal distribution. After
confirming this normality, we then performed correlation



analysis using Pearson’s correlation coefficient r. None of
these relationships were significantly correlated (p < .05),
though we report them below.

Conscientiousness and Patience resulted in a Pearson
correlation coefficient of r = -.144 and a significance value
of .190. The coefficient of determination R2 was .021,
meaning that Conscientiousness could only account for 2.1%
of the variation in Patience and 97.9% of the variability is
accounted for by other variables.

Emotional Stability and Patience had a Pearson correlation
coefficient of r = -.073 and a significance value of .329.
R2 was .005, meaning that Emotional Stability could only
account for .5% of the variation in Patience and 99.5% of
the variability is accounted for by other variables.

Agreeableness and Patience had a Pearson correlation
coefficient of r = -.174 and a significance value of .144. R2

was .030, meaning that Agreeableness could only account for
3% of the variation in Patience and 97% of the variability is
accounted for by other variables.

Surgency and Patience had a Pearson correlation coef-
ficient of r = -.022 and a significance value of .447. R2

was 4.93×10−4, meaning that Surgency could only account
for .049% of the variation in Patience and 99.051% of the
variable is accounted for by other variables.

Intellect and Patience had with a Pearson correlation
coefficient of r = -.093 and a significance value of .288.
R2 was .009, meaning that Intellect could only account for
0.9% of the variation in Patience and 99.1% of the variability
is accounted for by other variables.

IV. DISCUSSION

We did not find support for any of our five hypotheses
regarding the direct relationship between personality traits
and patience while teaching a robot during an LfD task. This
lack of support may be due to several reasons.

Firstly, our patience measure may not be well-suited to this
particular experimental paradigm. We sought to reward par-
ticipants who spent more time correcting the robot during the
testing phase, which may have led to an uneven weighting.
For example, we saw a few extreme cases in our data, with
patience scores of 100 and 4.1. The former score represents a
participant who attempted to correct the robot every time it
made a mistake, while the latter represents one who very
rarely did so. A larger sample would help determine the
robustness of the measure.

A second interpretation of the findings might be that
participants deduced the true objective of the LfD task, i.e.,
they realized that the robot was not actually attempting to
learn from them, and so they acted differently during the
experiment. However, given participant verbal and written
comments after the LfD task, we do not believe this is the
case. No participant indicated that they had any notion of the
true purpose of the experiment beyond what was described
to them at the onset of the study, and most were surprised
at the reveal when they were debriefed.

Third, it may be possible that there is no clear relationship
between personality and patience when teaching a robot.

However, given the strong evidence in the literature corre-
lating multiple personality attributes with patience across a
range of tasks [7], [12], [17], it seems reasonable to expect
such a finding would hold for robot teaching as well. It is
possible our experiment did not leave sufficient time to truly
tax participants’ patience [18], [24], or that novelty effects
of the robot played a role.

Indeed, this novelty effect could be impactful enough to
nullify the effect that personality plays in a LfD task. The
qualitative comments provided by participants hint at this
possibility. Many participants stated that while the robot was
”remarkably unintelligent”, they still enjoyed interacting with
the robot because it was either their first time or one of the
few times they had done so. One possible additional factor
that could be used in a patience measurement for an LfD task
is a definitive measurement of user familiarity with robots.

Though our results do not find support for a relationship
between personality and patience during LfD tasks, we still
believe that this work presents a useful contribution to the
robotics community. We implemented a fully autonomous
system for HRI, which is notable since a large percentage of
HRI work is implemented through Wizard of Oz approaches
[26]. While it may have exaggerated what a person could
experience while trying to create new robot behavior using
LfD, this design was a convincing replication of a task that
may be encountered in future real-world scenarios.

Furthermore, our participants reported believing that they
were actually teaching a robot and capable of modifying
its behavior during our experiment. This suggests that other
researchers can use and modify this experimental design to
explore other potential effects that may arise when a person
uses LfD techniques with a robot.

Personality underlies the way people behave, how they
perceive the world, and both their short-term and long-
term mental states. It has been linked to multiple human
qualities such as age, culture, gender, and educational level.
Additionally, personality remains relatively stable throughout
a person’s life. In essence, personality defines all of the
possible different ways a user may interact with a robot.
This encompasses apparent differences in behavior (e.g. the
participants mentioned earlier with patience scores of 4.1 and
100) as well as more subtle differences such as two users
with closer scores, the latter reflecting the motivation of this
study to determine how personality affects patience.

Teaching interactions with a robot will have a trade-
off between robot behavior accuracy and interaction time
requirements. Longer interactions with a robot will lead to
more accurate robot behaviors, but there are differences in
the amount of time people will devote to teach a robot
new behaviors. Therefore, we argue that it is vital to focus
on quantifying observable human behavior that stems from
underlying user personality during interactions with robots.
We focus on patience, but this extends to other kinds of
human behavior.

From a computing standpoint, being aware of a user’s
personality will allow a robot to effectively balance the
accuracy-time trade-off during a LfD interaction. For exam-



ple, a robot that knows a user has a certain personality type
and will not devote much time for teaching might employ
specific strategies of active learning. These strategies would
lead to the shortest possible interaction before achieving what
the user considers to be ”acceptable” robot behavior. On
the other hand, a robot that knows a user has a personality
type that corresponds to a more patient person may employ
active learning techniques that lead to a longer interaction.
This would result in new behavior that is significantly more
accurate and personalized than simply being ”acceptable.”

The creation of these metrics will allow robots to be
able to dynamically analyze human behavior and adjust their
own behavior to better suit their user based on personality-
centered models. These models will not be perfect from the
start since there will be differences in human behavior across
different types of learning tasks, and will require fine-tuning
through repeated interactions. However, these metrics would
eventually allow robots to evolve into highly personalized
machines, paving the way for a future where most, if not all,
people interact with robots on a daily basis.
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