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Abstract— Non-verbal, or visual, communication is an 
important factor of daily human-to-human interaction. Gestures 
make up one mode of visual communication, where movement of 
the body is used to convey a message either alone or in 
conjunction with speech. The purpose of this experiment is to 
explore how humans perceive gestures made by a humanoid 
robot compared to the same gestures made by a human. We do 
this by adapting and replicating a human perceptual experiment 
by Kelly et al., where a Stroop-like task was used to demonstrate 
the automatic processing of gesture and speech together. 59 
college students participated in our experiment. Our results 
support the notion that automatic gesture processing occurs 
when interacting with human actors, but not robot actors. We 
discuss the implications of these findings for the HRI community. 

Index Terms—robot gesture perception, human perception of 
robots, nonverbal interaction, social robotics 

I. INTRODUCTION 
Non-verbal communication is an important aspect of 

human social interaction as well as human-robot interaction 
[1]. One goal of HRI research focuses on the design of social 
robots that can communicate with and support humans to the 
point where they may positively affect human lives and well-
being [1][2]. The trust and attitudes that people harbor toward 
robots also play an important role in HRI, and the key factors 
of human trust are predictability and a means for social 
exchange [3]. Social exchange helps to convey the meaning 
behind why an action is performed or a decision is made and 
helps to facilitate human trust; erratic and unexpected behavior 
can damage human trust [3]. Therefore, in human-robot 
communication it is important to design robot behaviors that 
both conform to people’s expectations, and contingently 
convey social exchange cues to express intention, attitudes, and 
emotions [4][5][6]. In this paper, we specifically explore the 
communication channel of gesture. 

Gesturing is an essential mode of communication in human 
social interaction and is an easy way to convey messages in 
various situations, such as those where speaking to another 
person is not desired or possible [7]. Furthermore, gestures are 
an essential part of multimodal, collaborative dialogue, and aid 
in both the production of human speech and understanding the 
speech of others [8][9]. 

Previous research suggests that the physical appearance of a 
robot plays an important role in the human tendency to attribute 
human-like qualities to (i.e., anthropomorphize) humanoid 
robots and thereby treat them as if they were human [8][10]. 
Furthermore, this attribution can be influenced by gender; 
Eyssel and Hegel [11] recently discovered that people apply 
gender stereotypes to anthropomorphic machines, which can 
significantly affect social perception in HRI scenarios.  

Other work has hinted that there may be limits to the extent 
to which a humanoid robot can convey information when using 
gestures along with simultaneous speech (i.e., co-speech 
gestures).  Specifically, the suggestion has been made that 
when robot co-speech gestures appear to be too human-like, 
communication with humans can be adversely affected 
[12][13].  

Our work explores the effect that robot co-speech gesturing 
has on communication compared to human co-speech 
gesturing, which informs several of these larger questions 
about anthropomorphism in HRI. This extends our previous 
work on both perception of robot gesture as well as gendered 
perceptions of robots [6][14]. 

II. BACKGROUND AND RESEARCH QUESTIONS 
In this work, we present an experiment that is primarily an 

adaptation and replication of a study done by Kelly et al. [15] 
(herein referred to as “the reference study”). The main problem 
addressed in the reference study was to determine if gesture 
and speech, when used together, are processed automatically 
for language comprehension. In their experiment, participants 
viewed videos where either a male or female actor performed a 
common gesture accompanied by either a male or female 
voiceover. The actors in the video performed the gestures while 
sitting at a table, with only their torso visible. The co-speech 
gesture performed in each video was either congruent or 
incongruent with the voiceover. For example, the voiceover 
“hammer” may have a congruent “hammering” gesture being 
acted out on the video or an enacted incongruent gesture of  
“twisting.”  (See Fig. 1). 

In the reference study, participants were given a Stroop-like 
task of identifying the gender of the speaker in each voiceover 
as quickly and as accurately as possible. In a Stroop test, 
participants receive either consonant or conflicting information 
to process, which in the reference study was either a co-speech 
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gesture congruent or incongruent with the gesture named in the 
voiceover. Accuracy rates, response times, and event-related 
potentials (ERPs), were recorded for each response.  

The results of the reference study revealed that incongruent 
gestures led to longer response times, reduced accuracy rates, 
and higher brain activity. These findings were interpreted by 
Kelly et al [14] to indicate that participants were compelled to 
look at/interpret (i.e., automatically process) co-speech gestures 
even though doing so was not necessary for the task they were 
completing. These results intrigued us, and we wondered if we 
could replicate the congruency effects in a behavioral 
experiment using both human and robot actors.   

Our experiment replicates the reference study as closely as 
possible within both human-human and human-robot 
interaction contexts. To accomplish this, we substituted the 
male / female actor variation from the reference study with a 
humanoid robot / matched-gender human actor. We also 
substituted the male / female voiceover variation with a 
synthetic (robotic) / matched-gender human voice. Thus, our 
experiment conforms to a 2 (actor) x 2 (voice) x 2 
(congruency) x 9 (gesture type) within-subject factorial design. 

Just as in the reference study, the primary measures in our 
experiment were participant accuracy and response time (RT).  
However, we did not record ERP data due to not having access 
to an ERP instrument.   

The overarching goal for our experiment was to address the 
following question: Is human-humanoid communication 
similar to human-human communication? If so, then we would 
expect that irrelevant, incongruent, co-speech gestures made by 
either actor (human or robot) will lead to automatic gesture 
processing. This would be evidenced, as in the reference study, 
by slower RTs in the voice identification task when either actor 
performed a gesture incongruent with the action named in the 
voiceover.  

A. Main Research Question: Are people as affected by robot 
gesture congruity as they are by human gesture congruity? 
Our main research question was to determine if people 

respond to congruent and incongruent gestures made by a robot 
in a similar manner to gestures made by another person, and if 
the findings from the reference study with regard to automatic 
language comprehension hold for both robot and human co-
speech gestures.  

This question led to several preliminary questions that we 
addressed through pilot studies before we performed the main 
experiment. We were particularly concerned with ensuring a 

rigorous adaptation the reference study when switching from a 
male / female paradigm to a human / robot one.  

B. Preliminary Question 1: Perceived Robot Gender (Visual) 
Our first preliminary question was whether people 

considered the humanoid robot we intended to use in our 
experiment (Nao) as either male or female based on its visual 
appearance alone. This question was important because it 
would inform our choice for the gender of the human gesturer 
and voiceover in our main experiment. 

In the reference study, the human actors in the stimulus 
videos differed only in gender, and the Stroop-like 
manipulation exploited this difference through a gender-based 
Stroop-like manipulation of both visual and aural channels. For 
our experiment, we were interested instead in doing a 
human/robot – based Stroop-like manipulation. (i.e., one 
gesturer would be human while the other would be a Nao).  

Thus, this preliminary question was important in order to 
ensure that the implied gender of the robot did not contrast with 
the implied gender of the human subject in our stimulus videos. 
Given the results found by Eyssel and Hegel [11], maintaining 
a consistency between the perceived gender of the human and 
robot actors in our experiment potentially may help reduce 
variability during our Stroop-like test.  

C. Preliminary Question 2: Perceived Robot Gender (Aural) 
Since our main experiment used both aural and visual cues 

to trigger participant responses, a second preliminary question 
was: Given a human or synthetic voice sample, do people 
consider the voice to be masculine or feminine? 

D. Preliminary Question 3: Perceived Robot Action 
A third preliminary question was: given a robot gesture, 

what do people think it signifies? This question of gesture 
labeling has an even more substantial influence on the 
experiment compared to the first two preliminary questions 
since gestures form the basis of the entire experiment. If 
participants are unable to determine what the robot is doing 
when gesturing, then the congruency manipulation will be 
meaningless.  

E. Preliminary Question 4: Comparability of human and robot 
stimuli labels 
The fourth preliminary question asks if a person would 

interpret a gesture made by a robot in a similar way to how the 
same gesture made by a human would be interpreted. This 
question was important to determine which gestures would be 
used in the main experiment since, for each gesture type, the 
interpretation needs to not vary depending on the actor. 

To address these research questions, we conducted a pilot 
study to identify visual and aural perceptions of our robot’s 
gender and to know which human actor gender (male or 
female) would be most comparable to the perceived gender of 
our robot actor. We then used these findings to create an initial 
set of human and robot gestures for the purpose of a second 
pilot study. In this second study, we determined ground truth 
labels and comparability of the human and robot gesture 

Fig. 1. Example of an incongruent gesture from 
the Kelly et al. study we are replicating. 
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stimuli. Finally, we used these findings to prepare our main 
experimental stimuli videos.  

 
Section III provides an explanation of the materials used for 

creating our stimulus videos, Section IV describes the results 
from our pilot studies and main experiment, and Section V 
discusses our findings and their relevance to the HRI 
community. 

III. MATERIALS 
This section describes the creation of stimuli used in both 

our pilot studies and main experiment. We created two sets of 
visual stimuli (human and robot gesturers), and two sets of 
aural stimuli for the voiceovers (human and robot speech).  

A. Robot Stimuli 
For creating our robot visual and aural stimuli, we used the 

Aldebaran Nao robot, a 57 cm tall humanoid [16]. Nao has 6 
degrees of freedom on each arm, one in the wrist, two in the 
elbow, two in the shoulder, and one in the hand, where all three 
fingers are manipulated together to either open or close the 
hand. This restriction of finger movement prevented us from 
using a number of the stimulus gestures used in the reference 
study, so we compensated by programming additional 
comparable iconic gestures. 

We also discovered that the Nao has a limited maximum 
motor speed and will simply skip over certain programmed 
movements if that speed is exceeded during programming. 
However, this limitation did not play an important role for 
stimulus creation; any robot gestures that were visibly slower 
than their human-performed counterparts were speed up 
slightly on video. 

To program the Nao’s gestures we used Choreographe, a 
development environment provided by Aldebaran [17]. The 
interface is mainly drag and drop, and allows the programmer 
to create a sequenced combination of predefined or custom 
behavior boxes to manipulate the Nao’s joints or attributes, 
such as its voice or LED colors. Using Choreographe, and the 
videos we obtained from reference study authors as a guide, we 
programmed the following 14 gestures and actions: clapping, 
beckoning, juggling, knocking, sawing, scrubbing, shaking, 
squeezing, steering, stirring, turning, twisting, wiping, and 
chicken (the gesture where a person moves their hands near 
their shoulders and moves their elbows up and down typically 
to signify cowardice). We deactivated the Nao's LEDs for all 
stimulus recording. 

The robotic aural stimuli also were created using 
Choreographe, and the Nao generated the utterances through its 
speaker, which we then audio recorded.   

B. Human Stimuli 
After performing our pilot studies and determining the 

robot was perceived as female (see Section IV), we enlisted a 
female colleague to be recorded as the subject in the human 
stimulus videos. The subject wore a plain dark blue shirt, 
matching the dark blue accents on the Nao robot. To avoid any 
unwanted effects due to distractions, the human subject did not 
wear any jewelry, and her hair was tied up so that it would not 

be visible in the videos. The subject was instructed to perform 
the same 14 gestures in a similar fashion to the Nao. We 
ensured a careful balance between making the human gestures 
appear similar to the Nao’s while also keeping them human-
like; an example of this is visible in Fig. 2 for the gesture 
“clapping”. 

For the aural stimuli, we had a female colleague, who is a 
native English speaker and also a voice actor, record the 
requisite gesture names. Her voice was recorded using the 
same audio recorder used for the Nao speech. 

C. Video Recording and Processing 
Both the Nao robot and the human were filmed in a similar 

manner to remove as much potential bias as possible. Both the 
Nao and human subject were filmed against a black fabric 
background using a Canon Powershot ELPH 300 HS 12 
megapixel camera. The human subject performed the gestures 
while sitting at a table covered in black fabric. Due to its small 
stature and complexity in terms of programming balance and 
obstacle avoidance, we were unable to do the exact the same 
setup for the Nao; however, the stimuli were still nearly 
identical and comparable, as is visible in the Fig. 2. clapping 
videos. The human subject and Nao robot each were recorded 
in one continuous clip to reduce variation during recording, and 
then clipped in post-production to create single-gesture videos.  

The Canon camera used for recording captures 1080p high-
definition video. However, the video quality was slightly 

Fig. 2. Example still frames of the congruent and incongruent stimuli for the 
actor-same and actor-different videos. 
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degraded during post-processing where we darkened the scenes 
to remove potential distractions so as to shift focus as much as 
possible to the hands and upper torso in the videos. We cropped 
the videos as necessary to remove anything above the chin area 
for both the Nao videos and the human subject videos. Each 
gesture video was clipped to be exactly two seconds long. 
While there are three phases in gesturing: preparation, stroke, 
and retraction, the videos were cropped to the point where only 
the stroke phase is displayed [18]. All post-production was 
performed using iMovie. 

D. Main Experiment Apparati  
The application used in the main experiment was 

programmed in MATLAB using the Psychophysics Toolbox 
Version 3 (PTB-3) extension. PTB-3 allows for the precise 
displaying of audiovisual stimuli and interaction with a user. 
The main experiment was performed using MATLAB 2012a 
on a Mac Mini with the following specifications: Mac OS X 
version 10.7.3, a 2.3 GHz Intel Core i5 processor, and 4 GB of 
1333 MHz DDR3 memory. 

For recording reaction times, we used a Cedrus RB-530 
response pad to ensure accuracy. PTB-3 provides built-in 
functionality with the RB-530, allowing the programmer to log 
both the response time and the name of the button pressed. 
Each button of the response pad has a removable top portion 
where a set of colored or transparent button covers can be 
fitted. In this experiment, we removed the covers of the top and 
bottom buttons and placed a small piece of paper stating 
“ROBOT” and “HUMAN” underneath transparent button 
covers for the left and right buttons respectively. 

 

IV. METHODOLOGY 
All pilot studies and the main experiment were approved by 

the IRB at the University of Notre Dame. 

A. Pilot Study 1:Perception of Robot Gender  
The preliminary questions regarding the visual and aural 

perception of Nao’s gender were addressed simultaneously in 
our first pilot study. This study was administered online using 
SurveyMonkey. Participants first provided demographic 
information and took a short audio/visual test to ensure their 
volume was set correctly and they could play clips. 

The remainder of the first pilot study was split into two 
parts. The first part addressed the question of perception of 
Nao’s gender based on appearance alone, and as stimuli used 
both a still picture as well as muted videos of the Nao. 
Participants were presented with two videos and a picture and 

then asked whether the robot appeared to be a male or female. 
Ratings were obtained using a 5-point labeled scale with 
“confidently male” and “confidently female” on each end and 
“gender-neutral” as the center value.  

The next part focused on the second preliminary question as 
to the implied gender attributes of a robotic voice. Participants 
were presented with four audio clips, with each clip 
accompanied by the same three rating scales: male, female, or 
gender-neutral. Using the provided software, we generated 
samples we believed to be a deep masculine voice, a regular 
masculine voice, a gender-neutral voice, and a feminine voice.   

Eight participants, seven male and one female, completed 
the study. All participants were at least 18 years of age (mean 
age = 24.6 years). Given the muted videos and picture, the 
responses were: 25.0% for confidently male, 12.5% for 
somewhat male, 62.5% for gender-neutral, and 0% both for 
somewhat female and confidently female. The deep male voice 
and regular male voice each received complete consensus 
“male” votes while the female voice received complete 
consensus “female” votes. The default Nao voice received 4 
“female” votes and 4 “gender-neutral” votes.  However, for the 
last stimulus video where the Nao performed a gesture while 
speaking using its default voice, 0% voted confidently male or 
somewhat male, 25% for gender-neutral, 62.5% for somewhat 
female, and 12.5% voted for confidently female.  

These results suggest that just by appearance alone, the 
gender of the Nao appears to be undefined with a slight lean 
towards masculine, but when accompanied by a voice that is 
not obviously masculine, the Nao is strongly believed to be 
feminine. Since all of the main experiment videos required an 
accompanying voiceover, we decided to use the default Nao 
voice as the robotic voice and to use a female subject for the 
human stimulus videos. 

B. Pilot Study 2: Stimuli Selection and Labeling 
The third and fourth preliminary questions, how people 

interpret robot gestures and whether or not the robot and human 
gestures are comparable, were also addressed simultaneously in 
another pilot study. In particular, we were interested in 
establishing ground truth labels of the gesture videos to be used 
as the aural stimuli in our main experiment.1 

                                                             
1  One reviewer expressed concern over the number of participants in the 
labeling study, so we repeated it to ensure the same findings. 18 participants 
on mTurk completed the study (all US citizens, mean age 30.39, 8 women), 
and were compensated 5 USD. We again found high inter-rater agreement for 
the nine labels used in our experiment (Nearly all were greater than 12/18 
raters agreeing; one gesture, rubbing, was 11/18 raters). 

Fig. 3. The timeline of the stimuli videos. First a target was presented, then the visual gesture began. The 
voiceover started after a 200 ms delay. Finally, a black screen was displayed at the end. 
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This study was also performed online using Survey 
Monkey, and participants were recruited using Amazon's 
Mechanical Turk. Five people participated (all U.S. residents, 
mean age = 30.2), and were compensated 5 USD for 
completing the study. The group consisted of three males and 
two females. One participant’s responses were excluded due to 
being rather unusual and highly incongruous from the others. 

 Participants were asked to provide their demographic 
information and completed a short audio / video test. They then 
completed a short training task to instruct them on how to 
complete the main experiment. Next, they received all of the 
initial stimuli videos (14 robot, 14 human) in random order, 
and were asked two open-ended questions: “What action is 
being depicted?” and “Why might this action be performed?” 
The second question helped establish a context for the gesture 
being performed and provide more information on 
interpretation. This helped us to better determine which 
gestures were ambiguous and which gestures had a clear or 
universal meaning. 

The responses were then analyzed side by side, using 
various dictionary and thesaurus resources to determine which 
gesture videos had majority agreement on interpretations. Here, 
we define majority agreement to be 3 out of 4 raters giving the 
same label to a stimulus video.  

Of these videos, we also ensured inter-rater agreement 
between the labels for both the robot and human analogue (for 
example, both the human video and the robot video needed to 
be labeled as “clapping” in order for it to be included).   

This pilot study resulted in the following labels: clapping, 
juggling, rubbing (renamed from “scrubbing”), sawing, 
shaking, squeezing, steering, turning, and twisting.  

Both human and robot voiceovers for theses nine gesture 
labels were recorded and normalized in Audacity to have 
similar volume and pitch. In addition to these gesture 
voiceovers, we also recorded voiceovers for “knocking” and 
“stirring” to be used for training in the main experiment. 

C. Stimuli Video Finalization 
Each gesture video was slightly modified before being used 

in the main experiment. A white screen with a black crosshair 
was added to the beginning of each video and appeared for 
exactly 1.5 seconds to prime participants to prepare for the 

stimulus video. The gesture was then displayed for 2000 ms, 
and the audio began after a delay of 200 ms, matching the 
stimuli used by the reference study. Finally, the gesture portion 
of the video was followed by a black screen displayed for 3000 
ms. This allowed any participants who did not respond within 
the 1800 ms timeframe where the audio began and the gesture 
portion ended to still have time to key in their response RB-
530. (See Fig. 3). 

Given there were nine gestures, the variation of the entity 
that provided the voiceovers (human vs. robot), the variation of 
the entity that performed the gesture (human vs. robot), and 
whether the performed gesture was congruent or incongruent 
with the voiceover, we had a total of 72 videos in the main 
experiment. Table I shows the congruent and incongruent 
gesture pairs. 

D. Main Experiment 
We advertised the main experiment by means of flyers on 

the Notre Dame campus and the surrounding area, through 
electronic means such as email and bulletin boards, and 
through announcements to an undergraduate general education 
psychology course. Participants from the psychology course 
could receive extra credit, and other participants could choose a 
$5 gift card for either Target or Starbucks.   

Upon arrival, each participant was directed into a room 
where he or she was given a consent form, demographics 
questionnaire, and an instruction form. The participants were 
told that the purpose of the experiment was to determine how 
people respond to a synthesized robot voice versus a human 
voice. Participants were also told that they would watch a 
series of videos of either a robot or a human performing a 
gesture, and that their task was to respond as quickly and 
accurately as possible whether the voiceover in each video was 
either a robot or human. These statements were on the provided 
consent forms and also stated verbally by the experimenter as 
each form was handed out.  

After reading and completing the forms, the participant was 
then led to the main experiment room where the experimenter 
provided an overview of what would happen and explained 
both the training phase as well as main portion of the 
experiment. The experimenter then informed the participant 
that pressing either of the labeled buttons would advance the 
screen on the computer, and the program would guide the 
participant through the experiment via multiple prompts. Then, 
the experimenter left the room, in order to avoid subject 
reactivity effects. 

Participants received two training sessions to avoid learning 
effects. In the first training session, the participants practiced 
using the response pad, by simply responding to a text image 
on the screen that said either “ROBOT” or “HUMAN” and 
pressing the corresponding labeled button on the response pad.  

For the second training phase, participants were presented 
with videos similar to the ones used in the main portion of the 
experiment in a randomized order, and were once again 
reminded to respond as quickly as possible as to whether the 
voiceover was a robot or human voice. The gestures and 
voiceovers used in these training videos were “knocking” and 
“stirring.”  It is important to note that in this training phase, 

TABLE I. LIST OF THE NINE CONGRUENT AND INCONGRUENT 
SPEECH-GESTURE PAIRS. 
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participants were not presented with incongruent speech, 
resulting in only eight videos used in this portion (human or 
robot acting out knocking or stirring accompanied by a 
congruent voiceover).  

At the completion of the training phases, the participant 
was once again reminded of the experiment’s main objective 
(to pay attention to the voice), and the main portion of the 
experiment began.  Each participant encountered a randomized 
sequence of the 72 stimuli videos. The videos were divided into 
three 24-video blocks. We provided a 30-second relaxation 
video between each block to allow participants to take a break 
from responding. The relaxation videos were accompanied by 
soft music and did not contain any humans, animals, or robots; 
only nature scenes. At the conclusion of the relaxation video, 
the participant was prompted to resume the main experiment by 
pressing a button on the response pad.  

After this main portion of the experiment was complete, the 
MATLAB program instructed the participant to retrieve the 
experimenter from the next room. The experimenter then 
administered an interpersonal sensitivity measure and an 
attitudinal questionnaire (DANVA2-POS [19] and NARS 
[20]). The participant then completed a final questionnaire 
asking whether he/she noticed anything unique about the 
human voices versus the robot voices while going through the 
videos, and whether or not they focused primarily on the voice 
or the entity performing the gesture. Finally, the participant 
was given a debriefing form, the advertised incentive, and that 
concluded the experiment. 

V. RESULTS 
Fifty-nine people at the university served as participants in 

the main experiment, all but one of whom was an 
undergraduate (mean age = 20.24 years old). Of these, 31 
participants were female. The undergraduate sample included a 
diversity of majors. All participants were fluent in English, and 
all but two had lived in the United States for most of their lives. 
Data from only 54 participants could be included in the final 
analysis due to equipment failure or other technical difficulties. 

The dependent variables derived from the voice 
classification task were accuracy (i.e. classification of the voice 
as human or robot was either correct or incorrect) and response 
time (RT) based on the elapsed time to make the classification 
following the voice onset. In three instances, out of a total of 
3888 trials across all participants, a subject pressed their 
classification button prematurely (i.e., before the audio voice-
over started). No participant made this error more than once. 
These instances were coded in the data as missing values. 

Each dependent variable was analyzed using an appropriate 
within-subjects factorial ANOVA. In these analyses, significant 
effects were those with p-values < .05. Effect sizes for all 
ANOVA main effects and interactions were calculated as 
partial eta squared (η2

p). Values of η2
p between .01 and .06 are 

considered small effects, between .06 and .14 are considered 
medium effects, and above .14 are large effects [21]. The 
Greenhouse-Geisser correction was used where necessary to 
adjust degrees of freedom and p-values for violations of the 
sphericity assumption in the repeated measures ANOVA. 

A. Accuracy 
 The proportion of correct classifications was computed 

across each of the nine gesture types within each of the eight 
Voice, Actor, and Congruency combinations to which each 
subject was exposed. A 2 (Actor: human vs. robot) x 2 (Voice: 
human vs. robotic) x 2 (Congruency: congruent vs. incongruent 
gestures) ANOVA was applied to these data.   

Only the main effect of Voice, F(1,53)=5.43, p=.023, 
η2

p=.09, and the Voice x Actor interaction, F(1,53)=6.48, 
p=.013, η2

p=.11, emerged as significant from this analysis.  The 
interaction effect, depicted in Fig. 4, shows the mean 
proportion of correct classifications across the nine gesture 
types within each of the Voice and Actor conditions.  This 
figure indicates that, regardless of congruency, participants 
were more accurate in classifying the spoken voice when it was 
human provided that the video also depicted co-speech gestures 
being made by a human, whereas the opposite was true when 
the spoken voice was robotic.  Fisher’s Least Significant 
Difference (LSD) follow-up tests confirmed that participants 
were significantly more accurate with the human actor than 
with the robot actor under the human voice condition (black vs. 
gray bars on left; p=.05), but the arithmetically opposite 
difference under the robotic voice condition (black vs. gray 
bars on right) was not significant.  Further comparisons showed 
that participants were significantly more accurate in their voice 
classifications when viewing the human actor if the voice was 
human rather than robotic (left black bar vs. right black bar; 
p<.01), whereas there was no significant difference attributable 
to voice when the actor was robotic (comparison of gray bars). 

B. Response Time 
RTs were subjected to a 2 (Actor: Human vs. Robot) x 2 

(Voice: Human vs. Robotic) x 2 (Congruency: Congruent vs. 
Incongruent) x 9 (Gesture Type) within-subjects ANOVA. 
Since the effect of different gesture types was not the main 
focus of this study, results reported here will focus on the 
influence of Voice, Actor, and Congruency variables, collapsed 
over Gesture Type. Of these factors, only the main effects of 
Voice, F(1,50)=17.99, p<.001, η2

p=.26, along with the Voice x  
Actor interaction,  F(1,50)=3.82, p=.05, η2

p=.07, and the Actor 
x Congruency interactions, F(1,50)=4.78, p=.03, η2

p=.09, 
emerged significant from this analysis. 

 
Fig. 4. Mean proportion of correct classification across the nine gesture 

types within each of the Voice and Actor conditions. 
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Fig. 5. Mean RTs, collapsed across Gesture Type and Congruency, as a 

function of Voice and Actor conditions. 

 
Fig. 6. Mean RTs, for voice classification as a function of both congruent 
and incongruent gestures being performed by either the human or robotic 

actor, collapsed across Gesture and Voice types. 
 

Figure 5 depicts mean RTs, collapsed across Gesture Type 
and Congruency, as a function of the Voice and Actor 
conditions.  This figure reveals that RTs, like accuracy, showed 
a reversal of the effects of Voice across the two Actor types.  
LSD follow-up tests indicated that the participants responded 
significantly faster in the voice classification task when the 
voice was human provided that irrelevant co-speech gestures 
were being performed by the human rather than the robot actor 
(black vs. gray bars on left; p=.05).   

In contrast, the opposite was true under the robotic voice 
condition (black vs. gray bars on right), though the LSD 
comparison of these conditions was not significant.  Additional 
comparisons revealed that the RTs were slower to the robotic 
voice than to the human voice, both for the human (comparison 
of black bars; p<.001) and the robot (comparison of gray bars; 
p<.001) actors. These findings exactly parallel those reported 
for accuracy in showing that better voice classification task 
performance when Voice and Actor matched (e.g., human actor 
with human voice) than when they did not (e.g., the human 
actor but robotic voiceover).  Taken together, these comparable 
findings for accuracy and RTs with respect to the Voice x 
Actor interaction strongly suggest that participants were in fact 
attending to the video-based gestures even though such 
attention was irrelevant to completion of the voice 
classification task.  

Similar evidence that participants indeed were attending to 
the video-based gestures while performing the voice 
classification task was revealed by the significant Actor x 
Congruency interaction for RTs reported above.  Figure 6 
depicts this interaction, collapsed across both Gesture Type and 
Voice, by illustrating mean participant RTs for the voice 
classification task as a function of both congruent and 
incongruent gestures being performed by either the human or 
robotic actor.  This figure reveals that, regardless of gesture 
type and voice type, participants responded to the voice 
classification task more quickly when a human actor was 
performing an action congruent rather than incongruent with 
the gesture being named in the voice classification task, 
whereas the opposite was true for gestures performed by the 
robotic actor.  LSD follow-up tests indicated that the former 
comparison was significant (black vs. gray bars on left; p=.02), 
but not the latter (black vs. gray bars on right). Additional 
comparisons also revealed that participants responded more 
quickly when congruent gestures were performed by the human 
rather than robot actor (comparison of gray bars; p=.04), but 
not when incongruent gestures were performed (comparison of 
black bars). 

VI. DISCUSSION 
Our results show that the voiceovers significantly impacted 

participant response times. Our post-experiment survey did not 
show that understandability of the human or robot voice was a 
problem. Some participants stated that they occasionally had 
issues telling the difference between the robot and human 
voices, but not a single subject commented on any difficulty 
understanding the robot voice.  Comments about the robot 
voice quality were solely about the clearly artificial tone and 
odd emphasis on certain syllables. Furthermore, the Nao’s 
voice synthesizing software has been used successfully in 
various HRI studies such as [22][23][24].  

As the Actor x Voice interaction shows, when the actor and 
voice matched (i.e. robot-synthetic or human-human), 
response time and accuracy performance was superior to the 
mismatched condition, regardless of congruency. These results 
strongly suggest that subjects viewed the synthetic voice as 
“appropriate” for the robot and the human voice as 
“appropriate” for the human. However, the fact that it took 
longer for participants to react to the robot voice may play a 
role in concomitant gesture processing with robot actors. 

These results seem to indicate that humans do automatically 
attend to (i.e., process) irrelevant gestures performed by human 
actors.  That is, similar to what was shown in the reference 
study, we observed a Stroop-like effect in the present study 
when incongruent co-speech gestures were performed by a 
human actor.  However, such automatic processing did not 
seem to happen with our robot actor, and if anything the effect 
of congruency was reversed (arithmetically though not 
statistically) in this condition. The latter finding may suggest 
that, unlike human communicators, robot communicators do 
not provoke automatic processing of their co-speech gestures.  

These apparent differences in processing of co-speech 
gestures enacted by human or robot actors possibly can be 
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attributed to factors related to past experience. That is, as a 
normal part of our socialization, we come to know that humans 
have intentions (i.e. cognitive goals) that underlie both speech 
and gestures during communication. Therefore, when the 
words of a human communicator conflict with his or her 
gestures, a conflict of intentionality might occurs that could 
slow the processing and reactions of the communication 
receiver. However, the same conflict between the words and 
gestures for a robot communicator may just be perceived as an 
error; i.e., a person may not perceive a conflict of intentionality 
with a robot. More work needs to be done to reconcile this 
possibility with other work that has been done on the 
perception of robot intentionality (c.f. [25]). 

Yet another dimension of past experience that may be 
relevant here is that humans have a great deal of 
communication experience with other humans, but not so with 
robots.  More work needs to be done to identify the role that 
past experience, or perhaps even evolution, might play in 
contributing to our finding of differential processing of co-
speech gestures with humans and robots. 

A limitation of our study to note here is that our sample is 
young and almost entirely uni-cultural, with the oldest 
participant being age twenty-six. While we attempted to draw 
in adult participants of all ages from the local community, the 
experiment was conducted on a college campus where 
community accessibility may have been limited.  

We plan to expand upon this work in future projects. Given 
our findings about robot gesture interpretation, we would like 
to run another version of this experiment with a more diverse 
sample of participants and observe the effects discovered. A 
thorough analysis of the interpersonal sensitivity and attitudinal 
data collected may also lead to insightful findings. 

ACKNOWLEDGMENT 
We would like to thank Spencer Kelly for providing 

example videos from which we based our stimuli for this 
experiment as well as Maryam Moosaei, Elise Eiden, Ninabeth 
Cabahug, Michael Gonzales, Leonard Hall, Alexandra Janiw, 
Michael Clark, Michael Villano, and members of the Notre 
Dame eMotion and eCognition Lab. 

REFERENCES 
[1] L. En, S. Lan. “Applying Politeness Maxims in Social Robotics Polite Dialogue”, 

7th ACM/IEEE International Conference on Human-Robot Interaction, 2012. 

[2] V. Chidambaram, Y. Chiang, B. Mutlu. “Designing Persuasive Robots: How 
Robots Might Persuade People Using Vocal and Nonverbal Cues”, 7th ACM/IEEE 
International Conference on Human-Robot Interaction, 2012. 

[3] M. Lomas, R. Chevalier, E. Cross, R. Garret, J. Hoare, M. Kopack. “Explaining 
Robot Actions”, 7th ACM/IEEE Int’l Conf. on Human-Robot Interaction, 2012. 

[4] I. Poggi, C. Pelachaud, F. Rosis, V. Carofigliom, B. Carolis. “Greta. A Believable 
Embodied Conversational Agent”, Multimodal Communication in Virtual 
Environments, 2005. 

[5] C. Breazeal. “Emotion and Sociable Humanoid Robots”, International Journal of 
Human-Computer Studies, vol. 59, 2003. 

[6] L. Riek, T. Rabinowitch, P. Bremner, A. Pipe, M. Fraser, P. Robinson. 
“Cooperative Gestures: Effective Signaling for Humanoid Robots”, 5th ACM/IEEE 
International Conference on Human-Robot Interaction, 2010. 

[7] D. Halpern, J. Katz. “Unveiling Robotphobia and Cyber-Dystopianism: The Role 
of Gender Technology and Religion of Attitudes Towards Robots”, 7th ACM/IEEE 
International Conference on Human-Robot Interaction, 2012. 

[8] J. Bavelas, N. Chovil, L. Coates, L. Roe. “Gestures Specialized for Dialogue”. 
Personality and Social Psychology Bulletin, vol. 21, 1995. 

[9] H. Boukje, S. Kita, Z. Shao, A. Ozyurek, P. Hagoort. “The Role of Synchrony and 
Ambiguity in Speech-Gesture Integration during Comprehension”, Journal of 
Cognitive Neuroscience, vol. 23, 2011.  

[10] C. Liu, C. Ishi, H. Ishiguro, N. Hagita. “Generation of Nodding, Head Tilting, and 
Eye Gazing for Human-Robot Dialogue Interaction”, 7th ACM/IEEE International 
Conference on Human-Robot Interaction, 2012. 

[11] F. Eyssel, F. Hegel. “(S)he’s Got the Look: Gender Stereotyping of Robots,” in 
Journal of Applied Social Psychology, vol. 41, issue 9, 2012. 

[12] A. Kim, H. Kum, O. Roh, S. You, S. Lee. “Robot Gesture and User Acceptance of 
Information in Human-Robot Interaction”, 7th ACM/IEEE International 
Conference on Human-Robot Interaction, 2012. 

[13] A. Saygin, T. Chaminade, B. Urgen, H. Ishiguro. “Cognitive Neuroscience and 
Robotics: A Mutually Beneficial Joining of Forces”, RSS 2011. 

[14] C. Crowell, P. Shermerhorn, M. Scheutz, M. Villano. “Social presence effects of 
gendered voice and robot entities: perceptions and preconceptions, IEEE/RSK 
International Conference on Intelligent Robots and Systems, 2009. 

[15] S. Kelly, P. Creigh, J. Bartolotti. “Integrating Speech and Iconic Gestures in a 
Stroop-like Task: Evidence for Automatic Processing,” in J. Cog. Neurosci, 2010. 

[16] Key Features – Aldebaran Robotics: Available at: http://www.aldebaran-
robotics.com/en/Discover-NAO/Key-Features/hardware-platform.html  

[17] Choregraphe – Aldebaran Robotics: Available at: http://www.aldebaran-
robots.com/en/Discover-NAO/Software/choregraphe.html  

[18] A. Kendon. Gesture: Visible Action as Utterance. Cambridge Univ. Press, 2004. 

[19] H. Pitterman, S. Nowicki. “A Test of the Ability to Identify Emotion in Human 
Standing and Sitting Postures: The Diagnostic Analysis of Nonverbal Accuracy-2 
Posture Test”, Genetic, Social, and General Psychology Monographs, 2004. 

[20] T. Nomura, T. Suzuki, T. Kanada, K. Kato. “Measurement of Negative Attitudes 
Towards Robots”, Interaction Studies, vol. 7, 2006. 

[21] J. Cohen. Statistical Power Analysis for the Behavioral Sciences. Hillsdale, NJ: 
Lawrence Erlbaum Associates, 1988. 

[22] L. Ismail, S. Shamsudin, H. Yussof, F. Hanapiah, N. Zahari. “Robot-based 
Intervention Program for Autistic Children with Humanoid Robot Nao: Initial 
Response in Stereotyped Behavior”, International Symposium on Robotics and 
Intelligent Sensors, 2012. 

[23] S. Shamsuddin, H. Yussof, L. Ismail, F. Hanapiah, S. Mohamed, H. Piah, N. 
Zahari. “Initial Response of Autistic Children in Human-Robot Interaction Therapy 
with Humanoid Robot Nao”, 8th IEEE International Colloquium on Signal 
Processing and its Applications, 2012. 

[24] H. Cuayahuitl, I. Kruijff-Korbayova. “Towards Learning Human-Robot Dialogue 
Policies Combining Speech and Visual Beliefs”, in proceedings of Paralinguistic 
Information and its Integration in Spoken Dialogue Systems, 2011. 

[25] J. Hart, M. Vu, B. Scassellati. “No Fair!!! An interaction with a Cheating Robot”, 
5th ACM/IEEE International Conference on Human-Robot Interaction, 2010

  
 

978-1-4673-3101-2/13/$31.00 © 2013 IEEE 340 HRI 2013 Proceedings




