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Abstract—Group interaction is an important aspect of human social behavior. During some group events, the activities performed
by each group member continually influence the activities of others. This process of influence can lead to synchronized group
activity, or the entrainment of the group. Understanding entrainment is important, because it can be a critical behavioral indicator
of group cohesiveness, and can provide context for accurately understanding a group’s affective behavior. In this paper, we
present a novel method to automatically detect group psychomotor entrainment, which takes multiple types of discrete, task-
level events into consideration. We experimentally validated the method on two synchronous rhythmic activities, “the cup game”
and a marching task. We also compared its accuracy against two alternate synchrony detection methods in the literature. The
results suggest our method can successfully measure group psychomotor entrainment, and is more accurate compared to other
methods. This method will be useful to researchers interested in quantitatively and automatically measuring entrainment, and
can also provide insight into understanding how groups interact socially.

Index Terms—Social signal processing, synchrony, entrainment, joint action, computational group modeling
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1 INTRODUCTION

G Roup interaction is an important aspect of hu-
man social interaction, and is an active area of

research in social psychology, communication, and
cognitive science [1]–[6]. In group interaction, the
individual activity of each member continually in-
fluences the activity of other group members. Most
groups create a state of interdependence, where each
member’s outcomes and actions are determined in
part by other members of the group [6]. This process
of influence can result in coordinated group activity
over time, which can be described as the synchroniza-
tion, or entrainment, of the group.

Entrainment is described as the spatiotemporal co-
ordination of signals, which results from rhythmic
responsiveness to a perceived rhythmic signal [7]. It
can occur in many group contexts, such as dance,
music, and games, and can be a result of both inten-
tional and unintentional motor coupling during social
interaction. Intentional entrainment occurs in coopera-
tive group tasks, such as rowing a boat with a team.
In contrast, an example of unintentional entrainment
would be a group of friends spontaneously coordi-
nating their movements when walking together [8].

Clayton et al. [9] describe entrainment as “the pro-
cess whereby two rhythmic processes interact with
each other in such a way that they adjust towards
and eventually ‘lock in’ to a common phase and/or
periodicity”, and suggest that two basic components
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must be involved. First, there must be two or more
autonomous rhythmic processes or oscillators. And
second, the rhythmic processes or oscillators must
interact. According to Clayton et al., the interaction
between the rhythmic processes can be described as
entrainment if the system re-establishes the synchro-
nization after any perturbation.

In a group setting, the entrainment phenomena
can be observed not only based on the coordinated
movements of the group members, but also on how
the group members perform activities. If a group
task is cooperative and rhythmic (e.g., synchronous
swimming), then entrainment can also be found in
the activity performed by an individual member of
the group. Therefore, it is important to take a systemic
approach to modeling group entrainment, at both the
group-level, individual-level, and task-level.

This leads us to explore several research questions.
First, can we automatically measure the overall en-
trainment of a group while taking multiple types of
task-level events into account simultaneously? Sec-
ond, will such an automatic entrainment measure be
comparable to group members’ own perceptions of
entrainment? Third, can such a measure also be used
to estimate asynchronous behavior?

Addressing these research questions is important,
because synchrony1 is a crucial parameter in any so-
cial interaction. Group level synchrony detection may
be an important behavioral indicator of group level
cohesiveness, as well as accurately understanding the
affective behavior of a group [8], [10]. Understanding
how individuals contribute to synchrony can help us
perceive group dynamics more effectively.

1. We will use the term synchrony to represent entrainment.
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To address these questions, we have developed a
new method to automatically detect and model psy-
chomotor entrainment in groups. In contrast to other
methods, our method takes multiple types of events
into account, and is able to detect both asynchronous
conditions and also model “non-events” in time. Fur-
thermore, it is able to work with non-periodic time
series data as it estimates entrainment.

We validated the method in four ways. First, in
Section 4.1, we validated the method by applying
it to a multiple event-based rhythmic game, where
each player performs a periodic psychomotor activity
within the group, and each player’s movements influ-
ence all others’ movements. Our method was able to
model both synchronous and asynchronous activity,
and was well-matched to the players’ perceptions of
entrainment. Second, in Section 4.2, we compared
our results to another method from the literature
that uses single event types, and found our multiple
event-based method to be more accurate in estimating
entrainment. Third, in Section 4.3, we compared our
results to the cross-recurrence quantification analysis
(CRQA) method. The results again suggested that
our multiple event-based method is more accurate in
estimating entrainment.

Finally, in Section 4.4, we validated our method by
using it to study people engaging in synchronous and
asynchonous marching tasks while being followed
by autonomous mobile robots. We again found our
method accurate in measuring entrainment.

In Section 5, we discuss how our approach can
benefit the affective computing community and oth-
ers who design intelligent interactive systems. This
work will enable the community to more accurately
understand group behavior and estimate its cohesion,
a critical behavioral indicator of group affect [11].

2 METHODS FOR MEASURING SYNCHRONY
IN DYNAMIC SYSTEMS

Many disciplines have approached the problem of
how to assess synchrony in a system. These include:
physics, neuroscience, psychology, dance, and music
[9], [12]–[24]. Recently, researchers in computational
fields such as social signal processing and robotics
have also become interested in this problem [25]–[27].
Across all fields, two types of measurement methods
exist. The first is best suited for continuous time
series data, e.g., recurrence analysis, correlation-based
methods, and phase-based approaches. The second
type is well-suited for discrete events in time series
data, e.g., event-based methods. We will now describe
each of these methods.

2.1 Measuring synchrony in continuous time se-
ries data
Recurrence analysis is one of the most widely used
methods to measure synchrony [20], [28], [29]. This

approach is based on trajectory similarities in phase
space. First proposed in physics, this analysis method
was inspired by coupled dynamic systems. Recur-
rence analysis assesses how many times the state of a
system visits close to a previous state [30].

The graphical representation of recurrence in dy-
namical systems is called a recurrence plot (RP) [31].
Its central idea is to plot a dot when a state is suffi-
ciently close to any of its previous states. It is also a
useful diagnostic tool to quantitatively analyze recur-
rences in a dynamic system. Structures and patterns
found in an RP are closely linked to the dynamics
of the underlying system [30]. The cross-recurrence
plot (CRP) is the non-linear bivariate extension of the
recurrence plot [30], [32]. Recurrence quantification
analysis (RQA) is used to assess and diagnosis com-
plex dynamic systems using RP and CRP [33], [34].

Varni et al. [10] used the RP and RQA measures,
and presented a system for real-time analysis of non-
verbal affective social interaction in a small group.
In their experiments, several pairs of violin players
were asked to perform while conveying four differ-
ent emotions. RQA measured the synchronization of
the performers’ affective behavior. Konvalinka et al.
[35] also used RQA for measuring the synchronous
arousal between performers and observers during a
Spanish fire-walking ritual. This synchronous arousal
was derived from heart rate dynamics of the active
participants and the audience.

Correlation is another approach used to evaluate
synchrony among continuous time series data [36].
Typically a time-lagged cross-correlation is applied
between two time series using a time-window. For
example, Boker et al. [37] used the cross-correlation
method to determine the symmetry building and
breaking of body movements in synchronized danc-
ing, and Quian Quiroga et al. [38] used it to mea-
sure the synchronization between left and right hemi-
sphere rat electroencephalographic (EEG) channels.

Phase differences are another well-explored approach
in the literature. Typically, phases are defined by
Hilbert or wavelet transforms. For example, Richard-
son et al. [8] proposed a method to assess group
synchrony by analyzing the phase synchronization of
rocking chair movements. A group of six participants
rocked in their chairs with their eyes either open
or closed, and they used a cluster-phase method
to quantify phase synchronization. Néda et al. [39]
investigated synchronized clapping in a naturalistic
environment. They quantitatively described the phe-
nomena of how asynchronous group applause starts
suddenly, and transforms into synchronized clapping.

2.2 Measuring synchrony in categorical time se-
ries data

While the aforementioned methods work well for
measuring synchrony in continuous data, there are
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instances where it may be useful to have methods that
work across categorical time series data, which may
define discrete events.

Quian Quiroga et al. [40] proposed an event syn-
chronization (ES) method for discrete events which
can be used for any time series where events can
be defined. This method is simple and fast, and the
notion of phase is not required. As ES is based on
the relative timing of events, it can also determine a
leader-follower relationship between two time series,
if one exists. The authors applied their method across
two sets of time series data - EEG signals from a rat,
and intracranial human EEG recordings taken during
an epileptic seizure. In both cases, only singular types
of events (i.e., local maxima of input signals) were
taken into consideration.

Varni et al. [41] proposed an extension of this
work to measure group synchronization. They au-
thors described a system called I-DJ, which is capable
of retrieving music content based on the interaction
patterns (i.e., synchronous motion) in a group of
dancers. The synchronization of the group, as well
as a possible dominant person or a clique in that
group, were measured using their proposed method
from the dancers’ body motion. However, they too
only consider a single type of event when measuring
group synchronization.

Dale et al. [42] presented a cross-recurrence analysis
type method for quantifying the relationship between
two time series of categorical data (CRQA), and Coco
et al. [43] recently released an R package which pro-
vides an implementation of this and similar methods.

CRQA works adequately for consecutive, categor-
ical data. However, when the data are sparsely dis-
tributed across time (i.e. non-periodic), there are of-
ten instances when no synchronous activity occurs.
CRQA actually includes instances of these “non-
events” as actual events while measuring synchrony,
which can artificially inflate the true synchrony. ES-
type methods do not have this problem; however, they
are only able to incorporate a single type of event
while assessing synchrony, which is limiting consid-
ering the inherent multimodality of events within
human social interaction [44].

Thus, there is a significant gap in this space: there
are cases where it may be important to detect syn-
chrony across multiple types of events, and those
events may be sparsely distributed. Our work ad-
dresses this gap, by use of an event-based method
which can successfully take multiple types of discrete,
task-level events into consideration, and successfully
ignore the “non-events” while measuring the syn-
chrony of the system.

3 PROPOSED METHOD FOR MEASURING
SYNCHRONIZATION
During a group activity, multiple discrete, task-level
events occur, and the outcome and timing of each

event depends on the events preceding it. The overall
synchronization of the system depends on all of these
events. In our work, we are interested in modelling
the whole group as a system, thus, our method for
measuring synchrony incorporates multiple types of
events together. To achieve this goal, we extend the
ES method proposed by Quian Quiroga et al. [40], as
well as the follow-on work by Varni et al. [41].

Below, we describe the method to compute each
group member’s synchronization to the group as
well as the group’s overall synchronization, while
taking multiple types of events into consideration.
The events associated with individual participants
over time can be expressed by a time series. First,
we will describe the event synchronization method
between two time series for one event, and later we
will extend this method for more than two time series
and multiple events.

As described by Quian Quiroga et al. [40], suppose
xn and yn are two time series, where n = 1, . . . , N ,
and each time series has N samples. Suppose mx and
my are the number of events occurring in time series
x and y respectively, and E is the set of all events.

The events of both series are denoted by ex(i) ∈ E
and ey(j) ∈ E, where, i = 1, . . . ,mx, j = 1, . . . ,my .
The event timings on both time series are txi and
tyj (i = 1, . . . ,mx, j = 1, . . . ,my) respectively. If the
events are synchronous in both time series, then the
same event will appear in both more or less simulta-
neously. Two events are synchronous if the same event
appears within a time lag (±τ ) on both time series.

3.1 Measuring synchronization of a single type of
event across two time series
Now, suppose cτ (x|y) denotes the number of times a
single type of event e ∈ E appears in time series x
shortly after (within a time lag τ ) is appears in time
series y. Here,

cτ (x|y) =
mx∑
i

my∑
j

Jτij (1)

Where,

Jτij =


1 if 0 < txi − t

y
j < τ

1
2 if txi = tyj
0 otherwise

(2)

Similarly, cτ (y|x) denotes the number of times a
single type of event e ∈ E appears in time series y
shortly after it appears (within a time lag τ ) in time
series x. And,

cτ (y|x) =
my∑
j

mx∑
i

Jτji (3)

Where,

Jτji =


1 if 0 < tyj − txi < τ
1
2 if tyj = txi
0 otherwise

(4)
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From cτ (x|y) and cτ (y|x), we can calculate the
synchronization of events in two time series as,

Qτ (e) =
cτ (x|y) + cτ (y|x)
√
mxmy

(5)

Qτ (e) represents the synchronization of events in
two time series, where we are only considering a sin-
gle type of event e in both time series. We normalized
the value of Qτ (e) by the number of events in both
time series to get a value in between 0 and 1. Thus the
value of Qτ (e) should be 0 ≤ Qτ (e) ≤ 1. Qτ (e) = 1
means that all the events of both time series are fully
synchronized. On the other hand, Qτ (e) = 0 means
that the events are not synchronized at all.
cτ (x|y) and cτ (y|x) values also give us the leader-

follower pattern in two time series, if there exists any
[40]. This relationship can be incorporated during the
calculation of Qτ (e) for situations where this pattern
might be important.

3.2 Measuring synchronization of multiple types
of events across two time series
Qτ (e) gives us the synchronization of events in two
time series when only one type of event is considered.
In this section, we extend the notion of synchroniza-
tion of events in two time series for more than one
type of event.

Suppose we have n types of events {e1, e2, . . . , en} ∈
E(n), where E(n) is the set of all types of events. First,
we calculate Qτ (ei) for each event type ei ∈ E(n).
While calculating Qτ (ei), we will not consider any
other event types, except ei. Now, let mx(ei) be the
number of events of type ei occurring in time series
x, and my(ei) is the number of events of type ei occur-
ring in time series y. To measure synchronization of
multiple types of events between two time series, we
take the average of Qτ (ei), weighted by the number of
events of that type. We will call it the synchronization
index of that pair. So, the overall synchronization of
all events in time series x and time series y is:

∀ei ∈ E(n) : Qxyτ =

∑
[Qτ (ei)× [mx(ei) +my(ei)]]∑

[mx(ei) +my(ei)]
(6)

3.3 Measuring the individual and overall synchro-
nization index of the group
Using the described method, we will calculate the
pair-wise synchronization index for each pair. Sup-
pose we have H number of time series. The time
series data are represented as s1, s2, . . . , sH . First,
we calculate the pair-wise event synchronization
index for each pair. So, we have the value of
Qs1s2τ , Qs1s3τ , . . . , Q

s(H−1)sH
τ .

Building on the work of Varni et al. [41], after calcu-
lating the pair-wise synchronization index, we build

an undirected weighted graph from these indices,
where each time series is represented by a vertex.
So, if the time series are s1, s2, . . . , sH , then there is
a vertex in the graph which will correspond to a time
series. We connect a pair of vertices with a weighted
edge, based on their synchronization index value.

There exists an edge connecting two vertices in the
graph if the pair-wise synchronization index of the
corresponding time series is greater than or equal to
a threshold value Qthresh. Otherwise, there will be
no edge connecting that pair of vertices in the graph.
The value of Qthresh should be chosen based on the
group task as well as the physical configuration of the
group. The weight of that edge will be this pair-wise
synchronization index of that pair of vertices. We will
refer to this graph as the group topology graph (GTG).

The individual synchronization index depends on
both the group composition as well as the size of the
group. The size of the group influences the nature of
the group in many ways [6]. In some group tasks,
an individual may be influenced only by his/her
neighbors, whereas in other tasks an individual can
be influenced by any member of the group regardless
of the group’s configuration.

Moreover, the amount of influence may vary based
on the size of the group and orientation of the setup.
In the case of a very large group, the possibility for
each member to be connected with all other members
of the group becomes very small [6]. Other group
members may have some direct or indirect influences
in developing synchrony.

If the group size is small (e.g., four people), we can
assume that an individual is influenced directly by all
other group members. The individual synchronization
index of an individual is measured as the average of
the weight of the edges connected to the correspond-
ing vertex in the topology graph. So, the individual
synchronization index of series si is:

Iτ (si) =

∑
j=1,...,H, j 6=iQ

sisj
τ × f(si, sj)∑

j=1,...,H, j 6=i f(si, sj)
(7)

Where,

f(si, sj) =

{
1 iff edge(si, sj) ∈ GTG
0 otherwise (8)

After calculating the individual synchronization in-
dex for each member, the overall group synchroniza-
tion index is calculated. We take both the individual
synchronization index as well as the member’s con-
nectivity to the group into consideration while calcu-
lating the overall group synchronization index. In a
small group, we also consider that each individual is
supposed to connect to all other group members in the
topology graph when the group is well-synchronized.

For a given vertex in the GTG, the ratio of the
number of edges connecting to it, and the number
of maximum possible edges in a very synchronized
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Fig. 1. Game phases during one iteration of the cup game2. Game phases are: c - clapping, t - tapping, h -
holding, m - moving, and p - passing the cup. The game is in sequence from left to right, and top to bottom.

condition for that vertex, is called the connectivity value
(CV ). Thus we can define CV of series si as:

CV (si) =

∑
j=1,...,H, j 6=i f(si, sj)

H − 1
(9)

The CV represents how well an individual is syn-
chronized with the rest of the group. If an individual
is well-synchronized with all other members of the
group, then their CV value will be 1. On the other
hand, if they are not synchronized with any other
group members, then their CV value will be 0.

While calculating the overall group synchronization
index, both the individual synchronization index and
the CV are taken into account. First, we calculate each
individual’s synchronization index multiplied by their
CV . Then, the overall group synchronization index
is computed by taking the average of this product.
So, the overall group synchronization index, Gτ , is
computed by:

Gτ =

∑
i=1,...,H Iτ (si)× CV (si)

H
(10)

3.4 Sampling techniques for implementation
To utilize this method in practice, a researcher will
need to consider how to sample their time series data.
One might select different sampling techniques for
calculating individual, pair-wise, group synchroniza-
tion indices. Generally, the sampling technique should
be chosen depending on the nature of the group task.

For example, one sampling approach might be to
divide the whole time series into a set of predefined,
non-overlapping time windows (e.g., 10 s or 60 s). The
synchronization indices are then measured during
those windows. To represent the overall values of
the synchronization indices, the average of all values
measured during those time-windows can be used.

Another approach might be to use a sliding window
model over the time series to measure the synchro-
nization indices. To employ this technique, first the
synchronization indices are calculated on a sliding
window basis. To represent the overall value of the
indices, an average over all the values calculated from
the sliding windows can then be used. The size of the
sliding window should be chosen based on the group
task. We use this sampling technique in our work,
described in the following section.

2. Images are extracted from www.youtube.com/watch?v=Grb1oa72kmk

4 METHOD VALIDATION

We validated our method in four ways. First, we
applied it to a group of humans performing a syn-
chronous psychomotor task (playing the cup game) in
order to measure group synchrony (See Section 4.1).
Then, using the same data set, we compared our
method to two other synchrony measurement meth-
ods from the literature (See Sections 4.2 and 4.3).
Finally, Section 4.4 describes the validation of our
method by employing it to measure group synchrony
in synchronous and asynchronous marching tasks
while being followed by an autonomous mobile robot.

4.1 Validation of our method applied to a syn-
chronous psychomotor task

To validate our method and address our research
questions, we first sought to analyze a group event
where every member participates in a collective task,
thus contributing to the overall group synchrony.
Thus, we began by analyzing participants playing a
tabletop game called “the cup game”. This is a coop-
erative, rhythmic game, played by multiple players
sitting in a circle, and consists of clapping, tapping,
moving and passing cups (See Fig. 1). It was recently
popularized in the Hollywood film Pitch Perfect.

In the cup game, each player must exhibit coordi-
nated psychomotor skills, conduct a specific activity at
a specific time, and synchronize his/her activity with
the group. Thus, this game serves as a strong testbed
for validating our method, and also enables us to ex-
plore how group synchronization emerges over time.

In terms of setup, each player stands or sits at a
table (or on the floor), and plays the game with their
hands and a cup. During every iteration of the game,
each player performs a sequential and rhythmic ac-
tivity with the cup, and ends the iteration by passing
their cup to their neighbor. To maintain the overall
rhythm of the game, all participants need to perform
their tasks more or less synchronously over time. We
will consider all of these activities performed by each
player as the events of the game.

From a high level, different events during the game
can be classified into five categories: clapping (c),
tapping the cup (t), holding the cup (h), moving the
cup (m), and passing the cup (p). Fig. 1 shows a
single iteration of the game; all players perform the
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following tasks in sequential order: c− c− t− t− t−
c− h−m; c− h−m−m−m− h− p− p.

We ran a series of experiments where participants
played two games in groups of four, for approx-
imately two minutes per game. Two synchronized
Kinect sensors recorded RGB and skeletal joint infor-
mation of the participants during a game [45]. After
the games, each participant rated on a discrete visual
analog scale how well-synchronized they felt each
game was, and which game was more synchronous.

In a highly synchronized game, all game events
will happen more synchronously over time. On the
other hand, in non-synchronous games, events may
happen less synchronously. We hypothesized that
each player’s perception of game synchrony would
be based on the relative timing of game events. (i.e.,
for games where events are well-timed, players would
perceive the game to be more synchronous than those
with poorly-timed events). We were also interested to
see whether our system’s automatic measurement of
group synchrony would match player’s perceptions.

Thus, in this work, we took players’ post-game as-
sessments to be the ground truth upon which our later
validations are based. While measuring ground truth
using external observers is a reasonable approach in
other affective labeling work we do (c.f. [46], [47]), on
this project, synchrony seemed better measured using
a self-assessment approach. This was both to enable
capturing immediacy of playing the cup game, as the
tactile and auditory sensations which help players feel
“in-sync” are challenging if not impossible to replicate
for external observers. Furthermore, the literature sug-
gests self-assessment is reliable for data collected over
short time periods, as these data were [48].

4.1.1 Participants

A total of 22 people participated in our experiment,
50% female. Their average age was 24.8 years old
(s.d. = 3.97), and the majority were undergraduate
and graduate students. In total, there were six exper-
imental sessions consisting of four players each. Par-
ticipants were randomly categorized into six groups
(two people participated twice).

Participants were trained in how to play the game
before the experiment began, including playing one
practice game as a group. They then played two
games that were recorded. Following the experiment,
participants completed a short questionnaire asking
them to rate which if the two games they felt was
more sychronous.

4.1.2 Data collection

Fig. 2-A shows the data collection setup. Four players
stood around a table to play the game, two on each
side. Two Kinect sensors were positioned approxi-
mately 86 inches above the ground and 28 inches from
the table edge. The sensors tracked RGB and depth

information, which afforded the ability to track the
body joints of all players and the red-colored cups.

Before the game began, participants performed a
brief sensor calibration process. The players stood in
front of the Kinect for around 5 seconds to calibrate
the sensor. After the calibration process, each Kinect
tracked 15 body joint positions for two players. Fig. 2-
C shows an overview of the system architecture.

The sensors were connected to two computers run-
ning Ubuntu. Both machines ran the Robot Operating
System (ROS) Electric release. ROS is an open source
platform which provides libraries and tools to de-
velop robotics applications. Before data recording be-
gan, both systems were synchronized with an Ubuntu
time-server to ensure they were accurately keeping
time. Data were stored in the rosbag file format, which
includes timestamps for sensor readings.

4.1.3 High level event detection

After completing the data collection, we labeled dif-
ferent steps of the game as the aforementioned high
level events (c, m, and p). If any of the hand positions
of a player were poorly tracked in a given frame, then
we excluded that frame from analysis for that player.

Exclusion was based on the tracking accuracy of
the Kinect sensors. Due to hand occlusion at some
stages of cup game, the Kinect sensor can not track
hand joint positions with full confidence. Therefore,
we excluded these frames while performing event
detection. On average, we excluded around 35% of
frames for a session across the whole group; in the
best case we excluded 12% of frames. However, this
frame exclusion rarely interfered with our event de-
tection as it was well-distributed across the sessions.
Furthermore, we manually validated the accuracy of
each event class before employing our event detection
methods. This was performed via human labeling
using a representative sample of each event class.

Cup tracking

Cups were tracked using standard blob tracking
techniques in each frame. As only red color cups were
used, the red blobs were tracked from the RGB image
using the ROS cmvision package. After discarding
very small blobs as noise, the rest of the blobs were
considered as candidates for the cup’s position. An
undirected graph was generated using each blob cen-
ter as a vertex. Two vertices were connected in the
graph if they were closer than a threshold value.

From this resultant graph, we then calculated the
connected components. All of the blobs in a connected
component were clustered together. The center of each
cluster was calculated as the mean position of the blob
centers of that cluster, weighted by the area of each
blob. Each cluster center was a cup center candidate,
and those closer to the hands of the players were
considered as the cup positions during the game.
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Fig. 2. A) Block diagram of the setup. P1, P2, P3, and P4 refer to Players 1, 2, 3, and 4 respectively, B) Four
players playing the cup game. The players’ movements are tracked by two synchronized Kinect sensors. The
small solid circles represent the center of the cup, and the large solid circles represent the projected 3-D hand
joint positions on the RGB image plane. C) High level system architecture.

Clap (c) event detection

A clap event was detected when the hand joints
from the skeletal data were closer to one another than
a threshold distance. While calculating the distance
between hand joint positions, only the x and y coor-
dinates from the 3D skeletal position were used.

A clap event happened when: 1) the hand joints’
distance was within a threshold, 2) the distance be-
tween hand joints reached a local minima, and, 3)
none of the hand joints were closer to the cup position
in the RGB image, as calculated by projecting each
3D hand joint position on the RGB image plane.
This helped distinguish clapping events from tapping
events. Thus, clap events only lasted for one frame.

Move (m) and Pass (p) event detection

Cups move at several points during a game itera-
tion, note the m or p steps in Fig. 1. If a player moved
the cup with their right hand, this was denoted as a
move event (m in Fig. 1), and with their left hand, a
pass event (p in Fig. 1).

If a cup position was changed from the previous
frame, then it meant that the cup had been moved
by a player. In this case, our system assumed that the
player closest to the cup’s position moved the cup.
To determine the hand positions of each player in the
RGB image, the 3-dimensional hand joint positions
from the skeletal data were projected into the RGB
image plane. Then, in RGB coordinates, our system
calculated the distances of the hand positions from the
cup’s center. If the player’s right hand was closer to
the moving cup than their left hand, then our system
assumed that the player was moving the cup with
his/her right hand, and the event was denoted as a
move event (m) for that player, but if their left hand
was closer, we assumed they passed the cup (p).

As move and pass events may last for several
frames in the data, instead of denoting a move or
pass event for every frame, we considered the starting

and the ending frame of each event sequence as a
new event. The frame when a move event started was
denoted as a ‘move start’ (ms) event, and when the
move ended, that frame was denoted as a ‘move end’
(me) event for that player. Similarly, for pass event
sequences, two events were generated, a ‘pass start’
(ps) and a ‘pass end’ (pe) event.

To demonstrate what that looks like, suppose for a
few frames our event detector detected move events
as follows:

Time stamps : 1.1s 1.2s 1.3s 1.4s 1.5s
Events : - m m m -

This means that a move event started at times-
tamp 1.2 s, continued for one frame, and ended at
timestamp 1.4 s. From this move event sequence,
our system will generate two new events, ms and
me. A move start event happened when the move
sequence started. When the move sequence ended,
our system will label that as a move end event. Thus,
our processed events would be:

Time stamps : 1.1s 1.2s 1.3s 1.4s 1.5s
Raw events : - m m m -
Processed events : - ms - me -

4.1.4 Overall synchrony detection

After detecting the high level events for each player,
each player’s data were represented by a time series.
Frames received from both Kinects were adjusted to
represent the same frame across all time series data.
This yielded four time series, each of which repre-
sented the high level events associated per player.

For these time series data, the individual and over-
all synchronization indices of the system were calcu-
lated using our method. For an example calculation,
suppose the time series were s1, s2, s3, and s4. From
these time series, pair-wise synchronization indices
(Qs1s2τ , Qs1s3τ , . . . Qs3s4τ ) were calculated.
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The pair-wise synchronization indices measure the
degree to which the events are happening syn-
chronously in both time series. In this case, these
two time series are isolated from the rest of the
time series of that system. Thus, this measure gives
us the notion of how synchronous two players are
among themselves when they are isolated from the
rest of the group. For example, a higher pair-wise
synchronization index may be observed if two players
have the continuous tendency to synchronize their
events to each other over time. We may observe a
higher pair-wise synchronization index value if the
participants previously played the game together, and
they may synchronize with each other more easily.

After calculating these values, the topology graph
was generated from the pair-wise synchronization
indices. From the topology graph, each player’s syn-
chronization index Iτ (si) was calculated. This indi-
vidual synchronization index yielded how well each
player was synchronized with rest of the group.

As the group size was small and all of the players
were in close proximity, all players influenced one
another. If a player made a mistake at any stage of
the game, not only did it affect the overall synchrony
of the group, but it also affected other individuals’
synchrony with the group. From the individual syn-
chronization indices, the overall synchronization of
the group was calculated using Equation 10.

4.1.5 Results
We conducted a total of ten experimental sessions.
However, four sessions were excluded due to tech-
nical malfunctions (calibration or tracking errors), so
here we report the results from six sessions. A session
is defined as a group of four players participating
in two games, where each game lasts approximately
two minutes. We used a sliding window of 20 s
for calculating the pair-wise, individual, and group
synchronization indices, as this is approximately how
long it took to complete one iteration of the game.

Table 1 shows the individual and group synchro-
nization indices from all sessions and games. Here,
the values of the synchronization indices are aver-
aged over the duration of each game. The last col-
umn of the table represents the concordance between
players’ perception and our method’s perception of
which game was more synchronous. For example, for
Session3, the group synchronization indices produced
by our method are 0.44 and 0.48 respectively for
Game1 and Game2, and all players rated Game2 as
more synchronous; thus indicating 100% agreement.

Rather than go into depth for each game, we will
now focus on one game in detail, Session2, Game1.
This analysis method is identical for each game, and
all games showed similar characters, so the following
results reporting is generalizable to all games.

We present the individual synchronization index of
four players of one game in Fig. 3-A. As we used

Fig. 3. A) Time vs. Individual Synchronization Indices
of four players of Session2, Game1. B) Time vs. Con-
nectivity to Other Players of Session2, Game1 (Player
1 to Player 4, from top to bottom). A Connectivity value
of 3 suggests the group was well connected; 0 means
no connectivity. C) Time vs. Group Synchronization
Indices of both games of Session2.

a sliding window of 20s, the values present at time
0s actually represent the values calculated from the
time window 0s to 20s. We used τ = 0.21s for our
calculation, and Qthresh = 0.35 as the threshold of
synchronization index to generate the topology graph.
Based on the data from our representative sample, we
found that two people were not synchronous when
their pair-wise synchronization index fell below 0.35.
Thus, we used this as the threshold in our experiment.

An example of the connectivity of the nodes in the
topology graph is shown in Fig. 3-B. This contains
four sub-graphs, each showing the connectivity of a
player over time to other nodes (players) in the graph.
Each sub-graph shows the connectivity of one player,
with all other players in the topology graph. Time is
plotted along the x-axis, and the number of connected
nodes are plotted along the y-axis.

Each individual synchronization index depends on
that player’s connectivity with others in the topology
graph, i.e., the player’s synchrony with the other
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TABLE 1
Individual and Group Synchronization Indices for All Sessions

Sessions Games Indi. Sync. Indices∗ Group Sync. Index Measurement of Precision� Automated measure agreed with
P1 P2 P3 P4 GSI value† s.d.‡ (in s.d.s) % of players’ perception§

Session1
1 0.51 0.53 0.50 0.52 0.51 0.05 6.72 100%2 0.48 0.53 0.47 0.51 0.49 0.04

Session2
1 0.56 0.55 0.53 0.54 0.54 0.03 22.38 75%2 0.51 0.55 0.48 0.51 0.49 0.04

Session3
1 0.43 0.49 0.48 0.48 0.44 0.18 -4.79 100%2 0.52 0.50 0.50 0.48 0.48 0.05

Session4
1 0.32 0.40 0.38 0.44 0.29 0.13 -41.94 75%2 0.49 0.57 0.52 0.56 0.54 0.03

Session5
1 0.46 0.55 0.48 0.56 0.47 0.05 -19.19 100%2 0.45 0.56 0.51 0.57 0.52 0.03

Session6
1 0.49 0.53 0.45 0.54 0.47 0.07 -7.80 75%2 0.49 0.54 0.46 0.55 0.50 0.05

∗ Mean value of individual synchronization indices of four players (P1 to P4).
† Mean value of group synchronization indices. For each session, the higher group synchronization index value of the game is highlighted in bold.
‡ Standard deviation (s.d.) of group synchronization indices for each game. A lower s.d. value reflects stronger, or more stable, synchrony, and a higher

value reflects weaker, or less stable, synchrony.
� Measurement of precision for each Session in standard deviations (see Supplemental File for detailed analysis).
§ Percentage of players in each session for which our automated measure produced a match with the players’ perception about both games. For example,

in Session1 our method produced group sync. indices of 0.51 and 0.49 for Games 1 and 2 respectively. For this session, all four players agreed that
Game 1 was more synchronous than Game 2.

players. From Fig. 3-B, one can see that Player 2 is
connected with two more nodes in the topology graph
in-between the time window of 45 s to 50 s. This
means that one of the pair-wise synchronization index
values of P1−P2, P2−P3, or P2−P4 was less than the
threshold value. This is also the case for Player 3. This
observation means that the pair-wise synchronization
index of Player 2 and Player 3 (P2 − P3) had fallen
below the threshold during that period. Thus, there
was no edge between that pair in the topology graph
during that time window.

As a result, in Fig. 3-A, one can see that the indi-
vidual synchronization index for Player 2 and Player
3 was decreasing before they became disconnected
in the topology graph. However, after they were
disconnected in the topology graph, their individual
synchronization index started to increase. We can ex-
plain this situation using an example. Suppose a time
window pair-wise synchronization indices of P1−P2,
P1 −P3, and P1 −P4 are 0.5, 0.5, and 0.4 respectively.
As the Qthresh = 0.35, P1 is connected with all other
players in the topology graph.

Given this scenario, P1’s individual synchronization
index is (0.5+0.5+0.4)/3 = 0.47. Now, assume that in
the next time window these values have been changed
to 0.5, 0.5, and 0.3 respectively. In the changed sce-
nario, the pair-wise synchronization index value of
P1−P4 is less than the threshold. Thus, there will not
be any edge connecting these nodes in the topology
graph. For this window, the individual synchroniza-
tion index of P1 will be (0.5 + 0.5)/2 = 0.5. Although
it is not synchronous with respect to each player in
the group, for ones with which it is synchronous, the
level of synchrony is relatively higher in degree. One
can see this phenomenon in Fig. 3-A, just after the
connectivity between P2−P3 was lost, the individual
synchronization indices of both P2 and P3 increased.

For each game of a session, the group synchro-
nization index is calculated. For example, we display
group synchronization indices of this session (both
games of Session2) in Fig. 3-C. In this figure, time
in seconds is shown along the x-axis, and group
synchronization index is shown along the y-axis. We
calculate group synchronization index for each time
window of size 20 s. This graph also presents the
mean value of group synchronization indices.

The group synchronization index depends on the
individual synchronization index and the topology
graph. One can see from Fig. 3-C, the group synchro-
nization index of Game1 drops between the time win-
dow of 45 s to 50 s. During the calculation of the group
synchronization from the individual synchronization
index, we also take each node’s ‘connectivity value’
into consideration. This also supports the fact that the
individual synchrony drops and pair-wise synchrony
breaks during that period, see Fig. 3-A and B.

4.1.6 Discussion
From Table 1, one can find the percentage of the
players’ perception for which our measure produced
a match for each session. For example, from the table
one can see that the majority of participants agreed
as a group that Game1 was more synchronous than
Game2 in Session1. On the other hand, for Session4,
the majority of participants agreed as a group that
Game2 was more synchronous than Game1. For all
of the sessions, the group synchronization indices
produced by our method agreed with the perception
of the majority of participants in 100% of the sessions
(6 out of 6 sessions).

From the participants’ perception, and from our
automated method, one can see that the Game2 is
more synchronous than Game1 for the last four ses-
sions. One might suspect that this pattern may be



1949-3045 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation
information: DOI 10.1109/TAFFC.2015.2445335, IEEE Transactions on Affective Computing

IEEE TRANSACTIONS ON AFFECTIVE COMPUTING, VOL. 6, NO. 3, JUL-SEP 2015 10

TABLE 2
Group Synchronization Indices for All Sessions

Computed Using The Three Comparison Methods

Sessions Games Our method By Varni et al. CRQA
GSI † s.d.‡ GSI s.d. GSI

Session1
1 0.51 0.05 0.72 0.02 0.19
2 0.49 0.04 0.70 0.03 0.17

Session2
1 0.54 0.03 0.74 0.03 0.18
2 0.49 0.04 0.74 0.03 0.17

Session3
1 0.44 0.18 0.70 0.03 0.17
2 0.48 0.05 0.67 0.03 0.18

Session4
1 0.29 0.13 0.61 0.04 0.15
2 0.54 0.03 0.68 0.02 0.20

Session5
1 0.47 0.05 0.69 0.03 0.18
2 0.52 0.03 0.72 0.02 0.19

Session6
1 0.47 0.07 0.69 0.03 0.18
2 0.50 0.05 0.64 0.04 0.17

† Mean value of group synchronization indices. For each session, the higher
group synchronization index value of the game is highlighted in bold.
‡ Standard deviation of group synchronization indices for each game. A

lower s.d. value reflects stronger, or more stable, synchrony, and a higher
value reflects weaker, or less stable, synchrony.

attributable to learning effects. After the first game,
the players may become used to the rhythm of the
game, and learned how to be synchronous as a team.
Therefore, they showed a higher degree of entrain-
ment during the second game. One also can see that
most of the individual synchronization indices show
higher values during the second game.

From the results, however, one can see that the first
two sessions do not agree with this assumption. This
may be due to the fact that most of the participants
of the first two sessions had prior experience playing
the game. This may explain why a learning effect
was not visible during these sessions. Regardless, our
automatic method still successfully measured syn-
chrony of these two sessions, which matched with the
perception of the players.

Table 1 also presents the standard deviation (s.d.)
for the group synchronization indices for every game.
A lower s.d. value reflects stronger or more stable
synchrony, and a higher value reflects weaker or less
stable synchrony. For example, the s.d. of the group
synchronization index is less for Game1 than Game2
during Session2. During the other five sessions, the
s.d. values of Game2 are less than the values of
Game1. This means that Game1 exhibits more stable
synchrony than Game2 for Session2. During the other
five sessions, Game2 exhibits more stable group syn-
chrony than Game1. These s.d. indices are also aligned
with the answers of the participants as a group in
83.33% cases (5 out of 6 sessions).

Table 1 also presents the measurement of precision
calculation for each Session. The measures produced
by our method for two games of a session are different
by at least an order of magnitude of the standard
deviation. Although it appears that the two games
only differ slightly in their synchronization indices,
the differences are in fact significant.

4.2 Validation of our method through comparison
with an alternative ES method
Our method takes multiple task level events into
account to measure the synchronization of the group.
One may wonder if this approach is comparable or
more accurate than singular event-based methods in
the literature. Thus, we first validated our approach
by comparing it to the method proposed by Varni et
al. [41]. As discussed in Section 3.3, this is a singular
event-based synchronization detection method and
represents a reasonable point of comparison.

4.2.1 Data collection
To measure group synchrony using the method by
Varni et al. [41], we used the same data as described in
Section 4.1.2. We considered the same six experimen-
tal sessions, consisting of two games in each session
for the comparison. Here, we incorporated the skeletal
data of the participants, which is aligned with the
approach Varni et al. employ in their paper.

4.2.2 Method description and event detection
To employ the method by Varni et al. in [41], one first
measures the pair-wise synchronization index of two
participants from a single type of event. From these
indices, a connectivity graph is generated and then
the group synchronization index is calculated.

In their work, Varni et al. [41] measured the class
of events from participants’ body motion features.
As described in Varni and Camurri [10], these body
motion features might include the contraction index,
fluidity index, etc; however, in their recent work they
used motion index (MI). The authors reported calcu-
lating MI by performing silhouette-based background
subtraction; however, for our comparison study we
extracted MI using upper-joint skeletal data, as this
was a more robust measure given the overall back-
ground illumination of our dataset.

To calculate MI, we first projected the 3D skeletal
coordinates to the 2D image plane. Then, from two
consecutive frames, we calculated the distance each
upper body joint moved for each participant during
the game. If any joint position was poorly tracked due
to occlusion, we discarded that joint movement from
the calculation, using a comprable exclusion method
as described in Section 4.1.3. During the next avail-
able well-tracked position of that joint, we measured
the distance moved from the previously well-tracked
frame by that joint and divided the value by the
number of consecutive poorly-tracked frames for the
calculation. We took the local maxima of the sum of
the distances of all the upper body joints’ movements
in a sliding window of n frames as our event class.

Here, we used a window size of 3 (n = 3). We
removed local maximas with a value less than 200
pixels as noise. To calculate the group synchronization
indices, we used the same time window (20s), τ =
0.21s and Qthresh = 0.35 as used with our method.



1949-3045 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation
information: DOI 10.1109/TAFFC.2015.2445335, IEEE Transactions on Affective Computing

IEEE TRANSACTIONS ON AFFECTIVE COMPUTING, VOL. 6, NO. 3, JUL-SEP 2015 11

Fig. 4. Agreement between players in each session
and the synchrony measures (our measure, the mea-
sure by Varni et al. [10], and the CRQA measure). One
can see that the majority of the participants (at least
75%) agreed with the measurement produced by our
method in 100% cases (6 out of 6 sessions).

These events represent when a participant moves
their upper body the most within a time window.
It can approximate any abrupt body movements,
or even pulsing movements made in synchronous
rhythm with the game. Thus, this class of events was
similar to the class of events generated using the MI
by Varni et al. [41] in their original experiment.

4.2.3 Results
Table 2 shows the group synchronization indices mea-
sured using the method proposed by Varni et al., as
well as our method for all six experimental sessions.
The table shows the values of the synchronization
indices averaged over the duration of each game, as
well as the standard deviation (s.d.) for the group
synchronization indices for every game.

In Fig. 4, we present the percentage of players in
each session for which the synchrony detection mea-
sures produced a match with the players’ perception.
For example, for Session3, the group synchronization
indices produced by our method are 0.44 and 0.48
respectively for Game1 and Game2, and all players
rated Game2 as more synchronous; thus indicating
100% agreement. In contrast, the group synchroniza-
tion indices produced by Varni el al.’s method are
0.70 for Game1 and 0.67 for Game2; indicating 0%
agreement with players’ perceptions.

4.2.4 Discussion
From the group synchronization indices presented in
Table 2, one can see that the values measured using
the Varni et al. method are higher in degree than the
values produced by our method for all the games.
These higher values might indicate over-estimation of
the synchronization indices, as only a singular type of
event is considered in the Varni et al. method. Also,
as our method considers multiple types of task-level
events, it may be more conservative in nature.

As one can see from the data presented in Fig. 4,
the group synchronization indices produced by the

method proposed by Varni et al. agreed with the
perceptions of the majority of participants in only
66.67% of the sessions (4 out of 6 sessions), whereas
our method agrees with participants’ perceptions in
100% of the sessions (6 out of 6 sessions).

Moreover, the standard deviation values in Table 2
also suggest that our method was more accurate in
assessing group synchrony stability than the method
proposed by Varni et al. (As a reminder, a lower s.d.
value reflects more stable synchrony, and a higher s.d.
value reflects weaker synchrony). If the s.d. values
are equal for both games (e.g., see Session2), we
consider them to be aligned with the perceptions of
participants as a group. The s.d. values for the method
by Varni et al. are aligned with participants as a group
only in 50% of cases (3 out of 6 sessions), whereas our
results are aligned in 83.33% cases (5 out of 6 sessions).

4.3 Validation of our method through a compari-
son with CRQA
Dale et al. [42] used the cross-recurrence analysis
method for quantifying the relationship between two
categorical time series data through use of a con-
tingency table. Recently, Coco et al. [43] released a
package in R that implements CRQA and other meth-
ods. In this section, we use this package to perform a
comparison between CRQA and our method.

4.3.1 Data collection
We used the same cup game data as described in Sec-
tion 4.1.2. We considered the same six experimental
sessions, consisting of two games per session.

However, the data contains instances where none of
the synchronous events we were measuring occurred
during a given moment in time. This “non-event”
condition may have happened in between existing
events, such as between clapping or tapping events.
Our method is capable of supporting non-events,
however, were we to use these data within CRQA,
there is a chance these data will overestimate the
recurrence profile of the time series. (i.e., both the
pair-wise and group synchrony indices would be
artificially inflated). To avoid this potential chance
for overestimation, we performed a pre-processing
step on each time series pair to remove any instances
where “non-events” occurred both both players.

4.3.2 Description of the analysis
The ’crqa’ R package by [43] contains a function
named CTcrqa which uses contingency tables (CT)
to perform a cross-recurrence analysis on categorical
data. First, it finds all the categories from both time
series. In our data, different categories are different
event types. Then it calculates all the co-occurrences
of different sets of events between those two time
series to build a CT. After that, the recurrence profile is
computed along the diagonal of the CT [43]. Different
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delays can be used to generate different recurrence
profiles for the time series.

We used CTcrqa to compute the cross-recurrence
profile for our data. Two delays were used to com-
pute the recurrence profile. First, we used a delay
of 0, which means the package computed the co-
occurrences of the same event types for both time
series. Then, we used a delay of 1, as we also wanted
to count events as synchronous if they appeared
consecutively in the time series.

For each time series pair, we first calculated the
cross-recurrence of the pair for each delay. Then, we
took the average of these values for the two delay
patterns (0 and 1) as the measure of the pair-wise
synchrony between these two time series. We used
the same procedure for all of the pairs to calculate
the pair-wise synchronization index.

After computing the pair-wise synchronization in-
dices, we computed the individual and group syn-
chronization indices for each game by following the
method described in Section 3.3. First, we built group
topology graph to calculate the individual synchro-
nization indices. Then, from the connectivity value
and individual synchronization indices, we computed
the group synchronization index of that group. Based
of the values produced by CRQA, we used Qthres =
0.1 to generate the group topology graph. We did not
use any sliding windows during these calculations.

4.3.3 Results
Table 2 also shows the group synchronization indices
measured using CRQA for all six experimental ses-
sions. In Fig. 4, we present the percentage of players in
each session for which the synchrony detection mea-
sures produced a match with the players’ perception.

For example, for Session6, the group synchroniza-
tion indices produced by our method are 0.47 and 0.50
respectively for Game1 and Game2, and all players
rated Game2 as more synchronous, thus indicating
100% agreement. In contrast, the group synchroniza-
tion indices produced by CRQA are 0.18 and 0.17
respectively for Game1 and Game2, thus indicating
0% agreement with players’ perceptions.

4.3.4 Discussion
CRQA was slightly more accurate than Varni et al.’s
method in assessing group synchrony, as it reached
agreement with participants in 5 of 6 sessions. How-
ever, one can see in Table 1, there was a significant
difference between the two games in Session6 and
players’ perceptions (which we take as ground truth),
suggesting that Game2 was more synchronous than
Game1. Our method concurred with players on this
assessment, suggesting it is more accurate than the
other two methods.

One also may observe that the synchronization
indices produced by the CRQA method are fairly low.
This might happen as we used the relative ordering of

Fig. 5. A) Experimental setup of the human-robot
scenario. P1 & P2 are the humans, and B1 & B2 are
the robots. B) P1 & P2 demonstrate a synchronous
marching pattern. C) The conditions in the experiment.

the events during CRQA, instead of an equally sam-
pled time series (which is what the CRQA measure
assumes). Thus, there might be cases when the same
events occurred in both time series slightly apart in
the event order, but not as co-occurent or consecutive
events. These events might be considered as non co-
occurent events, which might be the cause of the
CRQA synchronization index to be lower.

4.4 Validation of our method by applying it to a
human-robot teamwork scenario
Our proposed method is capable of detecting group
synchrony in other scenarios as well, and robust
in identifying synchronous and asynchronous condi-
tions. In a fourth validation experiment, we employed
our proposed method on a human-robot teamwork
scenario to automatically measure group synchrony.
This work is part of another research project where
we are exploring using our synchrony models to aid
in human-robot joint action [45], [49]–[51].

In this experiment, both robots and people were in
motion in a naturalistic setting [52]. This differs from
the setup described in Section 4.1; there, the sensors
were static; whereas here, all sensors were dynamic
and in motion. We describe the experiment briefly
below; full details can be found in Iqbal et al. [51].

4.4.1 Data collection
Fig. 5 shows an overview of the experiment. Two par-
ticipants (performers) marched either synchronously
and asynchronously, and two autonomous mobile
robots followed behind each performer. The robots
followed their performer autonomously, and recorded
RGB and depth data from their respective on-board
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Kinect sensors. All sensors were precisely calibrated
in the same manner as described in Section 4.1.2.

Performer 1 (P1) acted as the leader in the experi-
ment, and the leader always marched at a consistent
pace. To keep constant time, the leader always faced
forward, and wore noise-canceling headphones that
were playing “Stars and Stripes Forever”, a march
by John Phillip Sousa. The second performer (P2)
acted as the follower, and was approximately two
feet behind the leader. Both performers performed
a “high-march” action together. (See Fig. 5-C for an
overview of the experiment and its conditions).

We recorded a total of four scenarios during this ex-
periment. Each scenario consisted of different patterns
of synchronous and asynchronous marching actions.
The follower was verbally instructed to adjust their
marching pattern based on the scenario to become
synchronous or asynchronous with the leader. We
timed all scenarios using a stopwatch, and each lasted
approximately 35 seconds. (Full details are in [51].)

4.4.2 Method description and event detection
We defined two types of task-level events to measure
overall group synchrony. The first type of event was
when a person begins to raise their leg from the
ground. The second type of event was when a leg
reaches its maximum height. As a result, a total of
four types of events occur when a person is marching
(one of the aforementioned events for each leg).

The events were detected offline using the recorded
RGB data of the mobile robots. To track each per-
former’s feet, we used the ROS cmvision package to
perform standard blob-tracking. These blobs corre-
sponded to the four unique squares of colored paper
attached to the performer’s left and right feet (see
Fig. 5). From the task-level events for the performers,

Fig. 6. A) Expected synchronization indices over time
under ideal settings. B) Actual synchronization indices
measured using our method applied to the four march-
ing patterns with both robots and humans in motion.

we measured the overall group synchrony using the
method described in Section 3. We used τ = 0.21s and
a sliding window of 5s for the calculation.

4.4.3 Results
Figure 6-A shows the expected synchronization in-
dices for these four scenarios. We expected to see a
high value for a synchronization index for the entire
duration of a session for Scenario 1, and a value
of zero for Scenario 2. For Scenario 3, we expected
to see our measured synchronization index decrease
beginning around seven seconds to a value of zero at
12 seconds, and increase again at about 20 seconds.
For scenario 4, we expected similar results, however in
reverse order. From Fig. 6-B, one can see that the mea-
sured synchronization indices over time reasonably
match those of our expected synchronization indices.

4.4.4 Discussion
The results suggest that our model is effective and ro-
bust measuring synchronized events that occur while
both people and sensors are in motion. This work is
encouraging for future work in understanding high-
level group behavior detection and measurement in
real-time for robotics. Considering motion may distort
sensing, our results show that our model was capa-
ble of detecting synchronized events and measuring
synchrony between people in motion, independent of
the height and pacing of steps.

5 GENERAL DISCUSSION

This paper presented a novel method to automatically
detect group psychomotor entrainment by incorpo-
rating multiple types of discrete, task-level events.
We described four experimental validations of the
method. First, we successfully applied it to a syn-
chronous tabletop game using fixed sensors to detect
both individual and group synchronization indicies.
Our method closely matched players’ own percep-
tions of synchrony across multiple games.

Then, using the same data, we compared our
method to a single-task level detection method in
the literature, and showed our approach was more
accurate overall. As our method incorporates multiple
task level events, it is more conservative than the
comparison method. In general, the synchronization
indices measured using the comparison method were
larger in value than ours, and were less likely to match
players’ perceptions of synchrony.

We also compared our method to a categorical ap-
proach from the literature, CRQA, and again demon-
strated our approach yields more accurate results.
Furthermore, unlike CRQA, our method is capable
of dealing with “non-events”, i.e., events that occur
between synchronous events, and thus also provides
a more conservative estimation of synchrony than
CRQA. Indeed, failing to conduct a pre-processing
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step on the types of data we work with (psychomotor
synchrony), CRQA is likely to overestimate both the
pair-wise and group synchronization.

Finally, we applied our method to an experiment
involving a synchronous marching task, with moving
people and moving sensors (robots), and found the
method robust in estimating synchrony. The results of
this study suggest that our method can successfully
detect both synchronous and asynchronous actions
while both the robots and people were in motion.

Our method presents several advantages. First, it
is simple, fast, and suitable for online implementa-
tion. In our lab, we have recently implemented this
method to work online an autonomous mobile robot
to measure group synchrony, and move in synchrony
with others in real time [50]. We plan to release this
software as open source in the near future.

Second, new types of events can easily be added
without requiring any changes to the algorithm. This
enables great flexibility, should a researcher wish
to explore increasing the granularity of synchronous
events, or want to incorporate new types of social
and/or affective behaviors.

Third, the method is robust, and works success-
fully with data from both fixed and mobile sensors,
unimodal or multimodal. This robustness is advanta-
geous if a researcher is fusing synchronous data from
sensors with varying frame rates.

In addition to group synchrony detection, our
method can also be used to measure each participant’s
individual synchrony. Some group members may be
more likely to be “team players”, tending to synchro-
nize more readily than others, and it could be useful
to detect their role in how group synchrony emerges.
This may particularly prove useful in the field of
psychiatry, where researchers are interested in assess-
ing how individuals with schizophrenia physically
interact in groups of matched controls, and how they
experience non-verbal social exclusion [53]. It also is
useful to researchers in pscyhology, who often seek
methods to study rapport building, social encounter
smoothing, and cooperation efficiency, all of which de-
pend on how well one can synchronize to others [25].

Our method can be helpful for other researchers in
the affective computing community in several ways.
It can enable the next generation of human-machine
systems to estimate the affective behavior of a group
as a whole, as well as individual group members, by
assessing how well-entrained they are to one another.
This has broad applications across the field, such as in
dominance detection in groups, the affective behavior
of crowds, or assessing the emergence of group roles
[54]–[56]. Also, it is robust to include many different
types of events from multimodal data sources; few
methods exist in the field to allow for this. The
field in general has been trending toward multimodal
affect modeling and social scene understanding (c.f.
[56], [57]; this work provides both a theoretical and

practical contribution in this area.
Finally, our method could be used to detect en-

gagement and skill acquisition in affective learning
contexts. Many researchers in this community seek to
ensure ecological validity in their work [58]; for most
students the naturalistic learning context involves
relationships with peers. The ability to model the
behavior of a student within the context of group
learning could be useful in this space.

This work also has implications in fields such
as human-robot interaction, human-computer interac-
tion, and ubiquitous computing. As intelligent sys-
tems begin to proliferate in human social environ-
ments, their ability to understand, predict, and re-
spond to human group social behavior becomes in-
creasingly important [52]. Joint action has recently
become an important and popular topic across these
communities, as well in the affective science and neu-
roscience communities [59]. Our method will directly
support these research efforts.
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