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Abstract— As robots enter human spaces, unique per-
ception challenges are emerging. Sensing human activity,
adapting to highly dynamic environments, and acting coher-
ently and contingently is challenging when robots transition
from structured environments to human-centric ones. We
approach this problem by employing context-based percep-

tion, a biologically-inspired, low-cost approach to sensing
that leverages noisy, global features. Across several months,
our mobile robot collected real-world, multimodal data from
multi-use locations; where the same space might be used for
many different activities. We then ran a series of unimodal
and multimodal classification experiments. We successfully
classified several aspects of situational context from noisy
data, and, to our knowledge are the first group to do so.
This work represents an important step toward enabling
robots that can readily leverage context to solve perceptual
tasks.

I. INTRODUCTION

When robots solve localization problems, they typi-
cally rely on traditional techniques. However, localization
is more than coordinates and semantic mapping; truly
knowing where you are requires an understanding of
spatio-temporal context. Most human social environments
(HSEs), where robots are likely to operate proximately
with humans, are multi-purpose, where the same physical
space is used for many different activities [1]. Humans
are able to resolve this problem by taking a context-
based approach - they watch, learn, and adapt to change
dynamically. However, robots do not yet have this ability.

One approach toward solving these problems is to
design situated sensing algorithms that employ global
feature processing, based on naturalistic data. This is
a biologically-inspired approach to sensing, and is how
many animals and insects solve tasks ranging from
planning and sensing to pick-and-place. In robotics and
computer vision, several researchers have utilized these
techniques for low-cost sensing and localization tasks (c.f.,
[2]–[5]). We build upon this previous work, by looking to
solve the problem of context-based perception.

When robots solve sensing challenges in HSEs, they
typically employ content-based algorithms, which assume
rigid, static contexts. While this approach may work for
structured, predictable environments, it is not suitable for
unstructured, dynamic, HSEs. Other fields, such as mul-
timedia, have recognized this shortcoming of a content-
based approach, and have seen great strides in solving
intractable problems by taking context into account [6].
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Fig. 1: A robot approached hundreds of participants in real-world settings, asking
for permission to interrupt them. An on-board Kinect captured RGB-D and audio
data. Two images are shown from the robot’s perspective: in the dining hall where a
participant agreed to be interrupted, and in the library where participants declined.

We argue similar gains can be achieved in tackling chal-
lenging problems in robot perception by taking advantage
of context.

This paper presents a foray into context-based per-
ception methods for mobile robots operating in HSEs.
Section II-D describes our initial work in this domain,
where we applied a top-down situated learning model
to teach a robot both to learn situational contexts and
behavior propriety [7]. In Section III, we describe signif-
icant improvements to this approach through new feature
selection techniques and classification algorithms. Section
III-D explores alternate multimodal fusion techniques, and
shows how introducing audio features earlier in the fusion
process can improve classification accuracy. Finally, in
Section IV we discuss the importance of these findings
for the broader robotics community.

II. BACKGROUND AND INITIAL WORK

A. Defining Context

While definitions of context vary across fields, in com-
puting Dey [8] defines context as “any information that
can be used to characterize the situation of an entity. An
entity is a person, place, or object that is considered rele-
vant to the interaction between a user and an application,
including the user and applications themselves.” Since
Dey’s seminal work, context has surged in popularity in
the technology sector, to the point where several have
called 2014, “The Year of Context” [9], [10].
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Daiss, CEO of one of the largest contextual computing
companies, recently suggested the following components
are required for realizing “contextual computing experi-
ences”: the correct input signals, information pertinent
to a person’s situation, and the ability to provide the
right experience [9]. While Daiss was discussing mobile
computing platforms, the same ideas resonate for mobile
robotics platforms operating in HSEs. A robot requires:
the ability to understand its inputs, correctly identifying
the current situation it and its interactants are in, and the
ability to perform contextually appropriate actions.

In robotics, substantial work has been performed in
sensing and decision-making tied to sensing. However,
the majority of this work has been content-driven, as
opposed to context-driven, and often assumes rigid, static
contexts [1], [6], [11], [12]. In social robotics these as-
sumptions are particularly problematic, because HSEs are
often in flux, highly fluid and variable in nature, making
traditional control paradigms unsuitable [1]. Furthermore,
the work is usually representationally-based. As Dourish
[13] suggests, these approaches to context are problematic
and likely to fail, because the context problem is not
representational, but interactional.

We define the social context for an agent (robot), P , in
a given environment, E, as the disjoint union of several
subsets: the situational context as a function of E, the
social role of P in E, P ’s cultural norms (irrespective of
E); E’s cultural norms (irrespective of agents in P ); and
the social norms for P in E [11], [12].

In this paper, we focus on situational context, which
deals with the perception of the environment. We consider
situational context to include contextual elements which
comprise both the physical and social environment. This
includes the physical location, the time of day, observable
behaviors in the scene, the social event taking place, etc.

Situational context may be useful for robot perception
for two reasons. First, while context is a broad topic to
consider in computing, situational context is a sufficiently
narrow sub-concept to make headway in studying. Second,
there are multiple studies in neuroscience and psychology
that support the idea that situational context, or environ-
mental cues, have a large role in the formation and recall
of memories, essentially modulating how we perceive and
remember the world. If humans can efficiently utilize
situational contextual cues to perceive the world, it seems
reasonable to also consider exploring them in robotics.

B. Behavioral Propriety

Lieberman writes “People look to the social envi-
ronment and external context to guide their behavior,
particularly when the appropriate course of action is
ambiguous or undefined.” [14] While this complex set
of interactions is difficult to explain neurologically in
humans, neuroscientists have also shown in rats that a
range of similar background contextual signals represent-
ing familiar places activates neural circuitry associated
with learned behavioral outputs for that situation [15].

Fig. 2: An example of Bar’s model of visual context [16]. In-depth processing
such as person and object recognition takes time, while top-down low-resolution
processing occurs simultaneously, providing high-level information which is incor-
porated before the final perception is formed.

For example, rats conditioned to associate a tone with a
shock who were then rehabilitated in a different context
still showed a fear response in the original context. This
work demonstrated that there is a neurological basis for
the association between context and behavior.

Propriety, or the state of observing socially accepted
behavioral norms, follows from, and is amplified by, this
ability we have to link contexts to behaviors. Knowing
that we link these concepts, the question which naturally
arises is “How?” Bar proposes one answer, which is a
neurological model of visual context [16]. In Bar’s model,
gist-based, thin-sliced, contextual associations are made
based on the scene as a whole. Thin-slicing is the ability
to analyze patterns after only a short period of exposure.
Later, this initial sense of context is combined with more
sensitive, but computationally intensive, cues such as the
appearance of particular objects in the scene. A pictorial
representation of this process can be seen in Figure 2.

Much computer vision and robotics research deals with
this second aspect of context: the ability to detect and
recognize salient objects. However, less work has been
done in taking the quicker, top-down approach.

In this paper, we use thin-slicing methods and non-
expert features to learn a particular contextual associ-
ation, an appropriateness function, based on real-world
data collected from a mobile robot. An appropriateness
function defines a mapping from a sensed context to an
appropriateness value for some behavior. In our case, the
appropriateness value is binary, indicating that either the
act of interruption is appropriate or inappropriate.

C. Situated Learning

In this paper, we focus on top-down situated learning
with an updatable learning model to learn an appropri-
ateness function. Situated learning, also known as active
learning, is a form of supervised learning where labels
are acquired by asking a user for them. By learning
directly from the environment, we can be certain to
acquire valid labels and can more easily move toward a
fully autonomous learning robot by pairing this with an
updatable learning model.

The ability to learn online is particularly important for
helping robots adapt to fluid social environments. Because
of the wide range of situations possible in even a simple
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Fig. 3: An illustration of our approach. From our training and testing datasets,
we first select a 10s frame right before the interaction began, and then extract
a keyframe. For each frame, we compute both the audio and video features. For
audio-only classification, we trained our model on the audio features of the training
dataset and tested them using audio features from the testing set. We also followed
this model for video-only classification. For audio-video multimodal fusion, we
concatenate the audio and features, then build a classifier model from the training
dataset. We then evaluate the model against the testing dataset.

environment, it is impossible to categorically learn an
appropriateness function for each one. Furthermore, as
the number of contextual elements in a scene increases,
the number of relationships between them grows expo-
nentially. Therefore, we need to employ situated learning.

There are a few challenges for this form of learning.
When dealing with real-world data, the chance of a large
noise-to-signal ratio is high. There are also few existing
corpora, so data collection becomes arduous for the ini-
tial training phase where algorithm parameters are being
tweaked. However, because propriety can only be defined
by those within a given context, the positive aspects of
situated learning far outweigh the negative.

D. Initial Work

Our initial work aimed to establish the importance of
situational context to determine behavioral propriety for
robots [7], [12]. We define an appropriateness function
to determine whether a robot should interrupt a person
in a public place, and evaluated it based on contextual
cues. The function was validated using data collected from
real world, multi-context settings, and used a top-down,
situated learning model.

1) Data Collection: We collected naturalistic data from
geographically distributed indoor settings around our uni-
versity campus. Since the ultimate aim for our work is for
a robot to be able to conduct itself in real-world settings,
it was necessary for our data to reflect the world outside
the laboratory.

All data came from GPS-ambiguous (and, in some
cases, GPS-denied) locations. We collected data from
two multi-use locations - the on-campus student center,
and informal locations throughout the campus library,
including a cafe and study area called “the fishbowl”. Both
the student center and library have multiple situational
contexts within them: study contexts, dining contexts, and
waiting (lobby) contexts.

These three contexts included varied levels of ambient
noise and different types of interactions between people.

In the study contexts, people were observed reading, using
computers, and generally not making much noise. In the
dining contexts, people ate meals, talked with friends,
and were overall louder compared to the study contexts.
In the lobby contexts, people waited for various reasons,
walked through the area, and chatted with one another.
This context was the loudest of the three.

The data were collected using a modified Turtlebot
robot. This is an open-source software and hardware
platform consisting of an iRobot Create, a Microsoft
Kinect v.1, and an ASUS laptop running the Robot Op-
erating System (ROS) on Ubuntu Linux [7]. The robot
was modified in order to stand and sense at human
height and interact with participants audio-visually via a
tablet interface and portable speakers. These adaptations
enabled us to perform multimodal data collection in an
ecologically valid way with low-cost hardware.

Fig. 1 shows an example of the setup for the data collec-
tion, and a view of the data from the robot’s perspective.
We collected data from three sources: the Kinect (RGB,
depth), the tablet (labels from participants), and a voice
recorded mounted to the top of the robot (audio). All data
was carefully time-synchronized [17].

Solely the robot’s motion was controlled by a remote
teleoperator (Wizard). In terms of Wizard production
variables [18], the teleoperator had complete control over
the robot’s physical movements (forward, backward, left,
right), and controlled the robot’s motion via line-of-sight.
The teleoperator also controlled when the robot began its
interactive activities, i.e., asking a user if it was a good
time to bother them. This decision was accomplished by
line-of-sight, and pressing a button to start the application.
Once the robot began its Android application, it was fully
autonomous in terms of its speech and visual display.

To create a robust data set, we collected data across
several days, several months apart. Our data collection
occurred at different hours of the day (morning, evening,
and night), and during different busy and non-busy periods
(e.g., lunchtime, during scheduled class times, etc.). In
total, we collected 169 interactions between the robot and
participants, split into two sets. Dataset 1 contained 60
interactions, Dataset 2 contained 109 interactions.

2) Analysis and Results: Full details of our analysis
are described in Hayes et al. [7], but we briefly describe
the techniques here to set the stage for our new work. Our
approach consisted of two phases. The first phase (learn-
ing) involved gathering data from interruptions to train our
appropriateness function. The second phase (validation)
tested the accuracy of our appropriateness function when
the robot was once again placed in these locations. We
also attempted to classify the situational context the robot
was in (study, dining, or lobby).

Each interruption was represented by 10 seconds of
data from both the recorded video and audio prior to
the interruption. We used one keyframe per second to
represent the visual component of our audio-visual feature
vector, and used each second of audio to represent the
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other. We then used principal component analysis (PCA)
to reduce the dimensionality of each vector. (PCA reduces
dimensionality in a lossy way and is analogous to the
fast, low-dimension processing in Bar’s model [19].) We
performed classification using 10-fold cross-validation and
a linear SVM.

Our initial cross-validation results yielded an accuracy
of 87.16% for detecting which context the robot was in
(library, study, or dining, chance = 33%), and 80.5%
for detecting the appropriateness of interrupting some-
one (chance = 50%). However, when we tried training
on Dataset 1 and learning on Dataset 2, our accuracy
dropped to 52.11% and 58.07% respectively. Since the
ultimate goal of our work is to build robust, context-based
perception and planing algorithms that work online in real-
time, we wanted to improve our results. The next section
describes how we accomplished this.

III. METHODOLOGY

We ran a series of four experiments to improve our
prior results [7]. We were particularly interested in ex-
ploring feature selection, classifier suitability, and mul-
timodal fusion. Across all four experiments, we used
the aforementioned datasets described in Section II-D.
We performed a pre-processing step on the training data
Dataset 1 and testing data Dataset 2 prior to running our
experiments, similar to our previous work. For each of the
interactions, we selected a 10s time window from both
the audio and video data immediately before the robot
interacted with the person, and again sampled 1 keyframe
per second. This yielded 600 training samples and 1090
testing samples. See Tables I and II.

We engaged in a symmetric validation and comparison
method through the use of the three classifiers: Naive
Bayes, Support Vector Machines (SVM) and Decision
Trees (J48). These are three commonly used classifiers,
and are well suited to our data [20]. As before, we
classified the context the robot was in (study, dining, or
lobby), and the appropriateness of interrupting a person
in the space (appropriate or inappropriate).

We ran a total of four experiments. In Experiment 1, we
replicated our prior approach to multimodal feature selec-
tion, but employed different classifiers. In Experiment 2,
we employed more descriptive audio features, unimodaly,
to explore their classification success. In Experiment 3,
we employed a new video feature descriptor, GIST, uni-
modally, to explore its classifiation success. Finally, in
Experiment 4, we employed multimodal fusion to combine
the results of Experiments 2 and 3 to see if overall
classification performance improved.

A. Experiment 1: Replication of prior work with new
classifiers

In our previous work, described in Sect. II-D, our ap-
proach was evaluated using just one classifier: SVM. One
of our first steps was to explore classification performance
using different SVM kernels and other classifiers. This

TABLE I: Distribution of training and testing samples across the three different
contexts: Study, Dining and Lobby.

Train Test

Study 80 100
Dining 150 180
Lobby 370 810

Total 600 1090

step would be helpful to understand if our approach is
robust and how sensitive it is to other classifiers.

We followed the same methodology for feature extrac-
tion and feature selection. In the validation stage, we
tested our approach using Naive Bayes, Support Vector
Machines, and Decision Trees.

1) Feature Extraction: We extracted the same features
as in our initial work. For each 1s keyframe, we had
one video image and one audio sample. From each video
image, we extracted the greyscale intensity values. All of
these values were concatenated into the feature vector.
Similarly, the amplitude values from the audio sample
were read and concatenated into the same vector. Thus,
early fusion was employed (see Sect. III-D).

2) Feature Selection: We performed feature selection
by employing PCA to reduce the dimensionality of the
fused feature vector. To decide on the best feature di-
mension size, we experimented on sizes varying from
50-500 features using cross-validation accuracy as our
measurement. We found that 150 features yielded the best
accuracy, and thus reduced our dataset to the top 150
features with the highest eigenvalues. After performing the
dimensionality reduction, the size of our training dataset
was 600 x 150 and testing dataset was 1090 x 150.

3) Results: Three classifiers were employed: Naive
Bayes, SVM and Decision Trees (J48). The training
data obtained in the previous step was used to train the
classification models and tested with the testing dataset.

The cross validation results and the classification results
from the testing data can be seen in Tables III and IV
respectively. One can see that by changing the SVM ker-
nel, there was an overall improvement in cross-validation
accuracies. However, when testing our models on unseen
data, we found similar results as in the prior work.

4) Discussion: From this experiment, we found that we
can detect both context and appropriateness using generic
global features. Features as simple as audio amplitude and
grey-value intensity can help in classification better than
chance, particularly for classifiers such as Naive Bayes.

However, we still sought to improve these results. In
particular, we wanted to explore how audio and video
features individually contribute to classification accuracy.
We also wanted to explore more descriptive (but still
basic) audio and visual features.

B. Experiment 2: Alternate Audio Features

Previously, we found that the fusion of audio and
video is helpful in determining situational context and
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TABLE II: Appropriateness distribution of training and testing samples.

Train Test

Inappropriate 370 770
Appropriate 230 320

Total 600 1090

TABLE III: The cross validation results from Experiment 1, using multimodal
fusion on the training dataset.

Naive Bayes SVM Decision Trees

Context 87.83% 98.33% 99 %
Appropriateness 65.33 % 98% 92.33%

appropriateness. However, the individual contribution of
the audio alone was not clear. Furthermore, we wanted to
explore if more descriptive (though still fast to compute)
audio features would yield higher classification accuracies.

1) Feature extraction: Initially, we only used amplitude
values, which can be strongly affected by noise and thus
give misleading information. Therefore, we chose standard
audio features that have been used in the scene under-
standing literature [21]. These features can be broadly
divided into 2 categories: Volume and Frequency.

The volume distribution captures the temporal variation
in an audio sample. For each keyframe in our data, we
used the Matlab Audio Analysis Library[22] to compute
the following volume features:

• Volume mean: Average of the amplitude across the
audio.

• Volume standard deviation: Standard deviation of
amplitude for the sample.

• Volume Dynamic Range (VDR): VDR is defined
as: (max(audio) - min(audio)) / max(audio)

• Silence ratio: Time when the volume was below 0.3
times the average volume.

We also extracted the following frequency features:
• Frequency centroid: Computes the spectral centroid

from the Fourier transform of the audio signal.
• Frequency bandwidth: Difference between the max-

imum and minimum frequency.
• Feature energy: The energy of the audio frame.
2) Feature Selection: Next, we sought to establish

which of the aforementioned audio features were the
most distinctive. Building on prior work [23], we used
information gain as a criteria for feature selection. It is
defined as follows, where H is the information entropy:

InformationGain(Class,Attribute) =

H(Class)�H(Class|Attribute) (1)

We noted the information gain score for each feature
and chose those features which had a positive score. There
were a few features that did not contribute significantly to
the class, which were discarded.

3) Results: The same three classifiers were used again:
Naive Bayes, KNN, and SVM. Using the training data
obtained in the previous step, we trained our classification

TABLE IV: Results from Experiment 1, applying the model learned from the
training dataset to the testing dataset.

Naive Bayes SVM Decision Trees

Context 51.65% 54.95% 60.36%
Appropriateness 46.88% 52.29% 54.95%

models and tested them with the testing data. The results
obtained by using only the audio features without per-
forming feature selection and after applying information
gain as a selection metric, can be seen in Tables V and
VI (see columns labeled “Audio Only”).

Audio features alone yielded an 74.31% accuracy for
predicting the context using the SVM classifier. The best
accuracy for appropriateness using the audio features
was 70.27% using decision trees. Even after performing
feature selection using information gain, there is only
a marginal difference for appropriateness and context
prediction. Since initially we had seven features, selecting
from those does not improve our performance signifi-
cantly.

4) Discussion: Our results show that audio features
alone are able to accurately predict context when using
SVM as a classifier. The seven features we selected
(volume and frequency) appear to capture the essence
of context well. Interestingly, there was little difference
overall with and without feature selection. This may be
due to the fact that we selected three features (from seven),
which is unlikely to make a big difference.

Overall, audio-alone outperformed our initial results
using multimodal fusion. This suggests audio plays an
important role in identifying situational context. We next
look to see if we can improve our results further with new
visual descriptors.

C. Experiment 3: Alternate Video Features

Thus far, we have seen that audio is important for
detecting context and appropriateness. We also wanted to
explore the importance of video alone. Furthermore, in our
previous work we used intensity as a feature, which, like
amplitude, can be misleading. Intensity values can vary
due to factors such as artificial lighting, camera positions
and amount of natural light, none of which are necessarily
important in detecting context.

We sought to use features that would make our ap-
proach illumination invariant, that would have good dis-
criminative power yet be simple to calculate. Thus, we
instead employed the GIST descriptor instead of intensity
values. GIST perceives the scene as a representation of
dimensions, such as naturalness, openness, roughness,
expansion, and ruggedness to capture the spatial structure
[24]. GIST has been used extensively in the literature for
both scene and object recognition. It is a global descriptor
shown to be less affected by illumination and small tran-
sitions. It captures the background, and neglects changes
in the foreground [24], [25]. Given our biologically-
inspired approach (c.f. Bar [16]), GIST is well-suited to
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our problem.
1) Feature extraction: We applied the GIST descriptor

to the video data, and computed the GIST descriptor using
code provided by Olivia and Torrabla [24]. The GIST
descriptor contained 512 features.

2) Feature Selection: After computing the GIST de-
scriptor, we sought to explore the contribution of these
features toward predicting context and appopriateness. As
explained in Sect. III-B.2, we wanted to measure the
goodness of each feature and so also used information
gain to determine which of the 512 features contribute
the most to the class. We again only included features
who had a positive information gain score.

3) Results: The results can be seen in tables V and
VI (column labeled “Video Only”). Table V shows results
without feature selection, and Table VI shows results after
applying information gain as a feature selection metric.
Without feature selection, we found that context is more
sensitive to video features compared to appropriateness.
We obtained an accuracy of 77.61% for context prediction
using SVM. However, the accuracy for appropriateness
classification was 54.86% using SVM.

After performing feature selection on the GIST features
using information gain, we found that the performance of
video features with respect to context and appropriateness
changed only marginally. The SVM accuracy on video
features increased to 78.07%, only a marginal increase.

4) Discussion: For context, we found that video fea-
tures performed well compared to audio features, particu-
larly for SVM (77.61% and 78.07% after feature selection
respectively). This is understandable, as GIST has been
shown to be an effective scene descriptor. However, for
appropriateness classification, video-only features did not
perform as well as audio-only features. This finding also is
unsurprising, as GIST is generally more robust for scene
understanding (as opposed to robot social behavior).

D. Experiment 4: Multimodal Fusion

Previously, we explored understanding situational con-
text using unimodal classification. Here, we seek to ex-
plore the effects of multimodality. This approach is intu-
itive, because it is how biological creatures (like humans)
quickly solve contextual understanding problems [19].

There are two types of multimodal fusion techniques:
early and late [26]. In our work, we employ early fusion,
where we fuse the unimodal features into a multimodal
feature vector, and then use the multimodal feature vec-
tor to train the classifier. In contrast, with late fusion,
classifiers are trained independently using the unimodal
features, and then unimodal scores are fused together [26].
In our former work we found our data to be better suited
for early fusion, so elected to employ it again here (albeit
with improved features).

We computed the audio and video feature vectors
individually. Using early fusion, we concatenated the
two vectors before building our classifier model on the
training data. Here, we have seven audio features (volume

and frequency related), and 512 video features (GIST
descriptor). After concatenating them, we ended up with
600 training samples and 1090 testing samples, each with
519 features.

We performed early fusion after completing feature
extraction. We computed the seven audio features and one
video feature (GIST descriptor) individually. We concate-
nated feature vectors and then we applied information gain
to select the most informative features. We again only
included those which had a positive score.

Then, the 600 instances of training data were used to
train the three classifier models. The classifier models
were evaluated using the 1090 test instances.

1) Results: Tables V and VI show the results for audio
and video multimodal fusion (see “Audio+Video”). For
context prediction, SVM yielded 74.95% without feature
selection, and 75.13% with feature selection. For appropri-
ateness, SVM yielded the best accuracy at 56.69%, which
declined slightly with feature selection (55.13%).

2) Discussion: Fusion appears to perform best for
context prediction using SVM after performing feature se-
lection. However, video-alone still appears to outperform
fusion for context. This may be attributed to the fact that
the video features are more descriptive. For audio and
visual fusion, feature selection does not appear to affect
the performance of predicting appropriateness.

IV. GENERAL DISCUSSION

Our work shows that it is possible for a robot to
understand situational context solely from global audio
and video features. To our knowledge, we are the first
group to do this. This is an exciting finding for robotics, as
robots operating in HSEs need to be able to fluidly assess
their situation and make appropriate decisions, particularly
in unstructured environments.

We found significant improvement over our prior re-
sults [7]. Previously, using multimodal fusion and PCA-
based dimensionality reduction, we found an accuracy of
52.11% for appropriateness classification using an SVM.
We were able to improve this to 70.64% using only audio
features (Naive Bayes, without feature selection). We also
obtained an accuracy of 78.07% using video-only features
for context prediction, which was encouraging (SVM,
with feature selection).

We have explored the use of both unimodal and mul-
timodal features, particularly with using more descriptive
features (volume and frequency for audio, and the GIST
descriptor for video). We found these features performed
better than simply using amplitude and image intensity
values in our previous work. We also found that using the
new audio features alone without any feature selection was
able to correctly predict appropriateness at 70.64% (Naive
Bayes, without feature selection). Feature selection itself
was not very effective for audio only features because of
the low dimensionality. However, using only video fea-
tures yielded at best a 78.07% accuracy for context (SVM,
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TABLE V: Results obtained on the test dataset without feature selection.

Naive Bayes SVM Decision Trees

Audio
Only

Video
Only

Audio
+

Video

Audio
Only

Video
Only

Audio
+

Video

Audio
Only

Video
Only

Audio
+

Video

Context 11.28% 69.90% 69.35% 74.31% 77.61% 74.95% 47.70% 65.59% 65.50%
Appro. 70.64% 40.45% 40.91% 70.18% 54.86% 56.69% 70.27% 48.34% 48.62%

TABLE VI: Results obtained on the test dataset using information gain for feature selection.

Naive Bayes SVM Decision Trees

Audio
Only

Video
Only

Audio
+

Video

Audio
Only

Video
Only

Audio
+

Video

Audio
Only

Video
Only

Audio
+

Video

Context 11.46% 69.44% 68.89% 74.31% 78.07% 75.13% 45.41% 65.59% 65.59%
Appro. 69.54% 39.26% 39.81% 70.09% 54.12% 55.13% 70.27% 47.06% 47.06%

with feature selection), and 70.64% for appropriateness
(Naive Bayes, without feature selection).

While these results are encouraging, there is scope
for further improvements. One way to improve accuracy
may be to use more descriptive (but still inexpensive to
calculate) features. For example, Scale Invariant Feature
Transform (SIFT) and its variants are commonly used for
recognizing scenes and objects [27]. There are also more
comprehensive audio features that may be well-suited to
this problem domain (c.f. [21]). Another avenue to explore
would be weighted fusion, since there is a skew in the
data toward more video than audio features. Since video-
only features performed quite well, it might make sense
to give it a higher weight during fusion. Finally, it would
be worth exploring varying the kernels and optimizations
in our classifiers. This may lead to improved results.

In the future, we plan to explore additional contexts, as
well as models of spatio-temporal data [12]. Furthermore,
we are currently working to adopt our approach to work
online on the robot, so it can classifying contexts on the
fly and use that to inform its motion.
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