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ABSTRACT
Joint action is an increasing area of interest for HRI re-
searchers. To be e↵ective team members, robots need to
be able to understand, anticipate, and react appropriately
to high-level human social behavior. We have designed a
new approach to enable an autonomous robot to act fluently
within a synchronous human-robot team. We present an ini-
tial description and validation study of this approach. Using
a synchronous dance scenario as an experimental testbed, we
found that our robot was able to execute appropriate actions
using our method. Moving forward, we aim to extend this
method by developing predictions for the robot’s actions us-
ing an understanding of the group’s dynamics. Our method
will be helpful to other researchers working to achieve flu-
ency of action within human-robot groups.

Categories and Subject Descriptors
I.2.9 [Artificial Intelligence]: Robotics

1. INTRODUCTION
In the robotics community, we have gained great profi-

ciency at building robots to solve problems autonomously in
fully controlled environments, such as manufacturing. How-
ever, as robots leave controlled spaces and begin to work
alongside people, many assumptions roboticists make about
perception and action do not apply. Unlike factories, people
act unpredictably - they occlude sensors, reconfigure their
living spaces, and otherwise “break the rules”when it comes
to what a robot can expect a priori [10].

In order for robots to e↵ectively integrate in Human So-
cial Environments (HSEs), they must be able to compre-
hend high-level social signals and respond appropriately [10].
Joint action is one naturally present high-level social signal
that occurs when multiple people coordinate their actions in
time and space to make a change to their environment [11].
In the HRI community, researchers have been working in the
area of joint action, where a robot can interpret and predict
the intentions of groups to better inform actions, and lead
to more fluent interactions [12, 3, 2, 9, 1, 7, 8, 5, 6].
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Recent work has focused on developing predictive meth-
ods for improving the fluency of interaction between a robot
and one or more humans. For example, a method devel-
oped by Hawkins et. al. [2] uses a probabilistic model that
accounts for human inconsistencies to determine appropri-
ate actions for a robot providing assembly parts. Further,
Ho↵man et. al. [4] developed a robot that improved its
performance on a human-robot team by considering both
its current perceptions and its anticipations based on what
it had already experienced. While this work improves the
ability of robots to have fluent interactions with one or more
individuals in HSEs, the method we present incorporates an
understanding of the behavior of the group as a whole in
order to inform robot action.

We have previously proposed an event-based method for
measuring the degree of synchrony of a group when members
are performing a joint action task [7, 6]. Using this method,
a robot can recognize the presence of joint action in HSEs,
but in order to be e↵ective and capable collaborators, robots
must also be capable of response and participation. We plan
to use this method to enable robots to make appropriate
decisions that consider high-level group dynamics during a
joint action collaboration with a multi-human team.

Our method is part of an ongoing research e↵ort to de-
velop approaches for enabling robots to plan and execute
appropriate behaviors in HSEs, through real-time observa-
tions of the environment. As a first step in validating the
method, we describe an experimental testbed involving a
robot dancing synchronously with multiple human perform-
ers. In later sections, we describe the system setup, and
discuss initial validation findings from a pilot study.

2. METHODOLOGY
When creating our experimental testbed, we had two ma-

jor goals. The first was to design a scenario that allowed us
to explore research questions regarding group motion and
synchronization, while taking into account the capabilities
of our non-holonomic drive mobile robot (Turtlebot). The
second was to create a realistic data-capture situation, where
people could freely perform tasks within the context of the
scenario while still being observable by four external Kinect
sensors. To that end, we selected an iterative, synchronous
dance scenario, where a robot observes several iterations of a
human performing the dance alone (Phase 1) and then itself
joins in (Phase 2).

To design the dance, we consulted with several amateur
dancers, and created a choreographed dance routine set to
Michael Jackson’s“Smooth Criminal”. Smooth Criminal is a
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song in 4/4 timing, and the choreographed routine includes
simple forward, backward, and rotational movements. The
dance is iterative, and performed cyclically in a counter-
clockwise manner. Each phase includes four repetitions of
the following steps: two forward and backward movements,
two claps, and a 90-degree turn.

To enable the robot’s motion, four extrinsic sensors were
placed counterclockwise around the dance floor. These were
tightly-synchronized Microsoft Kinect v2 sensors, each of
which captured depth, skeletal, and audio data [5]. The sen-
sors were connected to four computers that served as clients
in our system architecture. From the captured sensor data,
the clients detected the high level movements performed by
the human (e.g., when a person started moving forward).

After detecting an event, each client sent an event message
to a server, indicating the type, timing, and attributes of the
event (e.g., distance traversed). The server maintained syn-
chronized time across all clients and the robot. The server
aggregated event data for prediction, accepting event mes-
sages only from the client that the human and robot were
facing at the given time. During Phase 2, the server sent
movement commands to the robot at appropriate times.

For this dance routine, we only considered forward and
backward motion and claps as potential movement patterns
for the human performer. These motions were measured
based on the change in joint positions over time in skele-
tal data. Forward and backward motion was detected when
there was a su�cient change in the z component of the per-
former’s spine base joint. A clap was detected when the
hand joint positions of the performer reached a su�ciently
small local minima in a time window. To dictate robot mo-
tion, the server sent commands with movement parameters.

In this experimental setup, the server sent movement in-
structions to the robot during the second phase of the dance,
which were derived from the timing of events during the first
phase of the dance. The robot executed those patterns dur-
ing Phase 2 in synchronization with the human dancer. In
Fig 1, we present Phase 2 of an experimental session where
a human performer is dancing with a robot.

3. RESULTS AND DISCUSSION
To test our system architecture, as well as the movement

patterns of the robots, we performed a pilot study with 5
participants (mean age = 27 yrs), 2 were female. Partici-
pants were opportunistically recruited.

Upon arrival, participants provided demographic informa-
tion, viewed a short video explaining the dance routine, and
had time to practice dancing along with the music. Follow-
ing the practice session, we conducted the main study.

In the study, we sought to measure how accurately the
robot performed movement patterns along with the human
performer, as well as how timely action messages were re-
ceived by the robot from the server. To acquire these mea-
surements, we recorded the odometry data of the robot. We
compared this data to velocity, distance, and time data that
was used to dictate the actions of the robot.

From our results, we found that the robot received com-
mand messages from the server with a very short delay, likely
due to network latency. From the data, we observed similar
movement pattens performed by the human and the robot.
However, in some cases, we observed some deviations in the
robot’s movement per movement step. These deviations in
motion may have resulted from friction between carpet sur-

Figure 1: An experimental session where a person is dancing.

face and the robot’s wheels, or the physical limitations of
the Turtlebot to perform at the speed required by the song.

These preliminary findings will enable us to develop meth-
ods for generating more appropriate robot motion that con-
siders the limitations of existing hardwares. Moving for-
ward, we are working on developing methods to enable robots
to predict future activities of team members and plan their
actions using an understanding of the group’s dynamics.
Our method will be helpful to other researchers interested
in achieving fluency of actions within human-robot teams.
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